

special type of functions! Mon, we will define the notion of subsequence. Del Gubsequence): Consider a seguence sn.
Fobancy seguence nk af natural numbers
satisfying n, < n2 < n3 <..., a sequence
of the form snk is a subsequence of sn. Remark: We could write son as s(n),
nx as n(k), and snx as s(n(k)).

Trlormally, a subsequence is any infinite collection of elements from the original sequence, listed in order.

\n
$$
\mathcal{E}_{\chi}(\Gamma) \cdot s_{n} = (-1, 2, -3, 4, ..., (-1)^{n}n, ...)
$$
\n
$$
s_{n_{k}} = (-1, 2, -3, 4, ..., (-1)^{n}n, ...)
$$
\n
$$
s_{n_{k}} = (-1, -3, -5, ..., (-1)^{(2k-1)}(2k-1), ...)
$$
\n
$$
n_{k} = (1, 3, 5, ..., 2k-1, ...)
$$

Note that
\n
$$
a_N = sup_{\{S\ n : n > N\}} = (+\infty + \infty, ..., \infty)
$$

\n $b_N = inf_{\{S\ n : n > N\}} = (-\infty, -\infty, ..., \infty)$
\n $c_N(2)$: $Sm = (1, \frac{1}{2}, 3, \frac{1}{4}, ..., n^{-(1)^{n+1}})$
\n $\frac{w^2}{2!} = \frac{2}{4!} = 1, ..., n^{-(1)^{n+1}}$
\n $\frac{w^2}{2!} = \frac{2}{4!} = 2, \frac{1}{4!} = 1, ..., n^{-(1)^{n+1}}$
\n $\frac{w^2}{2!} = \frac{2}{4!} = 2, \frac{1}{4!} = 2, ..., n^{-(1)^{n+1}}$
\n $m_k = (2, 4, 6, ..., 2k, ...)$
\n $a_N = sup_{\{S\ n : n > N\}} = (+\infty, +\infty, ...)$
\n $b_N = inf_{\{S\ n : n > N\}} = (0, 0, ...)$

Limits of Subsequences demma: Given a sequence sm , $n \in \mathbb{N}$, it Sn_{κ} is a subsequence, then $\mathcal{M}_\mathsf{K} \geq \mathsf{k}$ for all $\mathsf{K}\in\mathsf{N}_\mathsf{K}$ $\frac{PX}{P}$ Base case: When $K = 1, n_1 = 1$ since $n_1 \in \mathbb{N}$ for all ^k Inductive step[:] Assume nk-1²k-1. Since \overline{U} $n_k > n_{k-1}$, we have $n_k \geq n_{k-1}$ +/2k

Def subsequential limit ^A subsequential limit of a sequence sn is any real number or $symbol$ to $or -\infty$ that is the limit of some subsequence of Sn

 $E_{\Upsilon}: S_{n} = (1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \dots)$ ⁰ and to are subsequential limits

Thm^s If a sequence sn converges to a limit then every subsequence also converges to s

Pf: Let
$$
sn_k
$$
 be an arbitrary subsequence of sn .
\n $Pr_{k} \, \& 20$. Since ms $sn = s$, $\frac{m}{2}$ N s.t. $n \geq N$
\n $nr_k \geq k \geq N$, so $lsn_k \geq s! \leq k$. Since 250 was
\narbitrary, we have ks $sn_k \leq s$.
\n fx : $s_{\overline{n}}(1, \frac{1}{2}, \frac{1}{3}, \dots)$
\n for is the set of all subsequential limits
\n $lim_{k \to \infty} (main subsequence from)$
\n $ket sn$ be a sequence of $real$ numbers.
\n(a) $let + ef$
\n if is set in : $lsn-t| es is infinite for all eso]
\nif and only if
\n if is a subsequence es $+\infty$ is a subseq. limit.
\n(b) sn is unbounded above es $+\infty$ is a subseq. limit.
\n(c) sn is unbounded below es $-\infty$ is a subseq. limit.
\n $ker(-s) = -e^{-s} = -e^{-s} = -e^{-s}$
\n $ker(-s) = -e^{-s} = -e^{-s} = -e^{-s}$
\n $ker(-s) = -e^{-s} = -e^{-s} = -e^{-s}$$

 \rightarrow n

Rfef Main Subsequences Theorem (a) Suppose F he set $\{n: |sn-t| < \epsilon\}$ is infinite for all $\epsilon > 0$. We can construct a subsequence of sn $Chose$ sn₁ so that Sn_1-t k1 Choose S_{n_2} so that $|S_{n_2}-t|<\frac{1}{2}$ and $n_2>n_1$. i Choose s_{n_k} so that $|s_{n_k}-t|<\frac{1}{K}$ and $n_k > n_{k-l}$. Note that $|s_{n_k}-t|<\frac{1}{K}\Longleftrightarrow t-\frac{1}{K}< s_{n_k}<+t+\frac{1}{K}$
for all $K\in\mathbb{N}$. So by the squeeze lemma, for all $k \in [N]$. So by the squeeze lemma
 $t \leq \lim_{k \to \infty} S_{n_k} = t$ and t is $t \in k$ Sa Sn $k \in t$, so k Sa Sn $k = t$ and t is a subsequential limit. Now, supposent is a subsequential limit of sn . Fix E 20 . Since there exists a subsequence Snk that (200×205) to t, there exist N s.t. k >N ensures $|s_{n_k}-t| < \varepsilon$. Therefore, $\{n_k : k > N\} \subseteq \{n : |s_n - k| < \epsilon\}$. Since Enk: kops is infinite, so is \S n' $|s_n-t| < \varepsilon_3^2$

(b) Suppose [sn is unbounded above] B_{14} the lemma, for all m o, \S_n S_n m is infinite Hence, we $\sum_{i=1}^{n}$ onstruc a subsequence as follows. C hoose n_2 so that S_{n_2} $>$ 2 and n_2 $>$ n_1 . Choose n_k So that sn_k 2k and n_k n_{k+l} $Fix\ m>0$. For k m_1 Snk $> k$ m. $Sine$ \widetilde{m} was arbitrary, $\lim_{k\to\infty} s_{nk} = +\infty$. Thus to is a subsegration limit. Suppose $1+\infty$ is a subsequential limit Assume, for the sake of contradiction that Sn is bounded above, that is there exists M > O s.t. $Sn \leq M$ for all $m\in\mathbb{N}$. Take sn_{k} sit. $\lim_{k\to\infty}sn_{k}$ = + ∞ . Then $S_{n_{k}} \leq m$ for all kEIN. This is a contradiction.

E Note that Csn is unbounded below $\left(\frac{1}{2}\right)$

Fsn is unbounded above $\hat{\psi}$ (P) II (b)
[t∞ is a subsequential limit of -sn] \mathbb{I} ^o is ^a subsequential limit of Snl g