Lecture 14 KatyCraig ²⁰²⁴ Wow we will apply the theory of sequences of real numbers to study continuous functions Heuristically ^a function is continuous if it is an unbroken curve with no holes CONTINUOUS qq.INT Nuns setlist belongs domain Functionsthe set of values of ^x for which flx is defined abbreviate domff range ^f IR We will study real valuedfunctions with dom ^f 4R Ex ftx dom IRL of we will studythistypeoff flx g 5⁵ dom ^f 1R2 will study in math ¹¹⁸

We can make the newsistic notion of continuity
precise using sequences.

Bel(continuous function)

\n• A function f is (continuomb at a point acceleration if, for every sequence
$$
x_n
$$
 in dom(f) satisfying

\n
$$
\lim_{n\to\infty} x_n = x_0, \text{ hence } \lim_{n\to\infty} f(x_n) = f(x_0).
$$
\n• f is continuous on a set $S \in dom(f)$ if it is continuous at every point in S.

\n• f is continuous at every point in S.

\n• f is continuous if $f(x_0)$ if it is continuous on all of dom(f).

\nWhat image: f(x_0) = f(x_0)

\n
$$
\lim_{n\to\infty} f(x_n) = f(x_0)
$$
\n
$$
\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \lim_{n\to\infty} \lim_{n\to\infty} x_n = x_0
$$
\n
$$
\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \lim_{n\to\infty} x_n = x_0
$$
\n
$$
\lim_{n\to\infty} x_n = x_0
$$
\n
$$
\lim_{n\to\infty} x_n = x_0
$$

 $Kemark: \perp \!\!\!\perp \alpha$ function $f(x)$ is continuous you can "pass the limit inside the function If x_n and x_0 are in dom(f) and $\lim_{n\to\infty}x_n=x_0$ $\lim_{n\to\infty} f(\chi_n) = f(\chi_0) = f(\lim_{n\to\infty} \chi_n)$. $Ex:One can show that $f(x)=Sin(x)$ is continuous$ $ThuS, for any convergent sequence $\chi_r$$ $\sin \theta$ sin $\cos \theta$

The definition of continuity that appears in most
textbooks involves s 's and Us's. The next thome $text$ textbooks involves ϵ 's and $\sqrt{3}$'s. The next theorem shows that this is equivalent to our definition

Thm (E-8 character ization of continuity)
Given f and not dom (f),
G| f is continuous at no f if and only if It is continuous at π_{\bullet} if and only if for all 20 , there exists 8 0 sich that
 χ Edom(f) and $|\chi \cdot \chi_0|$ ² δ imply Ifk)-f(x.) $x \in \text{dom}(f) \text{ and } |x - x_0|^2 \delta$ imply $|f(x) - f(x_0)|^2 \epsilon$ \neg there exists $2 > o$ so that for all \S \neg , there exists $x \in dom(f)$ with $|x - x_0| < \delta$ Satisfying $|f(x)-f(x_0)| \geq \varepsilon$.

 $\frac{1}{\sqrt{2}}$ Assume $I(x, x_n | n \text{ dom}(f) s.t. \text{h} \text{S}_{\infty} x_n = x_0$ We aim to show $lim_{n\to\infty} f(x_n) = f(x_0)$. $Fix \, \epsilon > 0$. $B_{y}(\mathbb{I})$, there exists 800 so that $|x_{n}-x_{0}| < \epsilon$ $implies$ I f $(kn)-f(k_0)$ $1\leq \epsilon$. Since $\frac{m}{n}$ as $kn = k_0$ there exists N s.t. $n > N$, $|x_n - x_0| < \mathcal{S}$. Thus, n [>]N ensures $|f(x_n)-f(x_0)|$ ². Since 270 was arbitrary, this shows $\frac{lim_{k\rightarrow\infty}f(x_{n})=f(x)}{h}$. To prove $(D = \times 1)$, we will show $(D = \times 1)$ Assume $\n *1*\n (1)$, that is, there exists 200 so that for all 50 , there exists $x \in dom(f)$ with $|x - x_0| < \delta$ s at is fying $|f(x)-f(x_0)|^2 \mathcal{E}$. In particular ince π >0 for all $n \in \{N\}$, there exist. x_n ϵ dom (f) satisfying $|x_n - x_0| < \frac{1}{n}$

 $card$ $|f(x_n) - f(x_0)| \geq \epsilon$. Then $lim_{n \to \infty} x_n = x_n$. but $\lim_{n\to\infty} f(x_n) \neq f(x_0)$. This shows $\neg \bigoplus$. I $EX: Consider F(x) = 3x^2-2$, dom $(f)=R$ Step 1: prove $f(x)$ is continuous via $sequency$ definition. Fix $x_0 \in \mathbb{R}$. Fix $x_0 \in \mathbb{R}$. Fix x_n in IR with $\lim_{n\to\infty}x_n = x_0$. Then, by the
limit theorems (the limit of product Sum limit theorems (the limit of product Sum is the product/sum of limits) we have $\lim_{h \to \infty} f(x_n) = \lim_{h \to \infty} S(x_n)^2 - 2 = 3(x_0)^2 - 2 = f(x_0)$. This shows f is continuous at x_0 . Since x_{o} (dom (f) was arbitrary, f is continuous. $\gamma_n \rightarrow \chi_o$ $5x_n$ $5x_n$ (limit of product isproductof $(Sx_n)(x_n) \supset (Sx_n)(x_n)$ (limit of product.)
 $Sx_n^2-2 \supseteq Sx_n^2-2$ (limit of sum ...) $3x^{2}-2 \rightarrow 3x^{2}-2$ (limit of sum...)

Step 2: prove $f(x)$ is continuous via \mathcal{E} -8 characterization of continuity

 $Fix \, \chi$ e K _{is} $Fix \, 220$ $Let S = min\{\frac{C}{3(1+2k_0l)}, 1\}$, so $S = \frac{C}{3(1+2k_0l)}$ and $S = 1$

Scratchwork: $|f(x)-f(x_0)| < \epsilon \Longleftrightarrow |(3x^2-7)-(3x^2-2)| < \epsilon$ $\sum_{1}^{8}3|y^{2}-x^{2}|<9$ \leq 3 $(x-x)(x+x)$ \leq $|x| - |x_0| \le |x - x_0| \le |x - 1|$ \lt $|53x-x_0|$ $x+x_0|<\epsilon$ $\sum_{n=2}^{\lfloor x\cdot 1\rfloor x} \frac{1}{|x|^{2}}$
=> $\frac{1}{|x^{2}x^{2}}$ = $\frac{1}{|x^{2}x^{2}}$
=> $\frac{1}{|x^{2}x^{2}}$ = $\frac{1}{2}$ + $\frac{1}{2}$ ks $\frac{1}{|x^{2}x^{2}}$ = $\frac{1}{2}$ $\frac{1}{|x^{2}x^{2}}$ = $\frac{1}{2}$ $\frac{1}{|x^{2}x^{2}}$ = $\frac{1}{2}$ $\langle \equiv \rangle$ $|x-x_1| \leq \epsilon$ $3(1+2|x_0|)$ Since $S = 1$, if $|x - \alpha_{0}| \leq \xi$, by $\frac{\delta}{\epsilon}$ the reverse triangle inequality, 0
 $|x| - |x_0| \leq |x - x_0| \leq 0 \leq 1,$ $s_0 \leq |x| \leq |+ |x_0|$ S_{0} $|x + \chi_{0}| \leq |\chi| + |\chi_{0}| \leq |+2|\chi_{0}|$ $Since \& \leq \frac{\varepsilon}{3(1+2k_0)}$, if $|x-x_0| < \xi$ $|\chi-\chi_o|<\underbrace{\xi}_{\text{S}(1+2|\chi_o|)}\Longleftrightarrow \text{S}|\chi-\chi_o| (1+2|\chi_c|)<\xi$
 $\Rightarrow \text{S}|\chi-\chi_o||\chi+\chi_o|<\xi$ \Leftrightarrow 3 | $(x - x)$ $(x + x_0)$ | < Σ $\left| \left\langle \xi \right| \right| \leq \left| \left\langle \xi \right| \right| \leq \epsilon$ \Leftrightarrow $|S_{\chi^2-2}-(S_{\chi^2-2})|<\epsilon$

 $\Leftrightarrow |f(x)-f(x_0)| < \varepsilon$.

Since EDO was arbitrary, f is continuous
at xo. Since xot domit) was arbitrary,
f is continuous.