

Otten, the easiest way to prove that a function is continuous is to show that it is ^a combination of simpler continuous fins

 $g(x)=f(x)+g(x)$, dom(fta) = dom(f) Ndom(g)
 $g(x)=f(x)g(x)$, dom(fa) = dom(f) Ndom(a) $g(x) = f(x)g(x),$ dom (fg) = dom (f) Mdom(g)
 $g(x) = \frac{f(x)}{g(x)},$ dom (f) = dom (f) Mdom(g) ({z; g(x); $g(x) = \frac{1}{g(x)}$ dom = 1= dove 1 + 1 ndom q nix g& 70] $g_{\sigma f}(x)=g(f(x)),$ donn $(g_{\sigma f})=g_{\sigma f}(f)(x)f(x)$

Thm (sum, product, quotient cts fns): Lf fand g
wf+g is.cl are continuous at $\chi_0 \in \mathsf{K}$, then x) 7+g is. continuous at x.
b) fa⁰ is continuous at x $\begin{array}{lll} \text{(b) } & \text{if } & \$

 $\frac{dy}{dx}$ het h=f+g, hz=fg, hz= $\frac{1}{9}$. For i=1,2, and3, rake xn Edom(hi) that converges to x. $c \cdot \overline{d}$ We aim to show hilxn) converges $+\delta$ \cup h χ χ Since f and Ege since t and a are continuous functions
flxin) converges to flxin) and glxin)
converaes to glxin). converges to gloss

- Since the limit of a sum is the sum of
the limits, $f(x_n^4) + q(x_n^1) \Rightarrow f(x_0) + q(x_0^1)$,
that is halo \Rightarrow halos. This shows (a).
- Since the limit of a product is the product of the limits, thin glant the larges),
that is, helant heled. This shows b
- Since the limit of a quotient is the quotient of the limits landwe thecked that we never divide by zero $\frac{f(x)}{f}$ $\overline{q(x_n)}$ $\overline{q(x_0)}$ that is $h_3(x_n) \to h_5(x_0)$. This shows (c). \Box

Thm: composition of cts from Suppose f is ontinuous at x. and a is continuous at fixo). Then Ω f is continuous at Xo PX: Suppose Xn^t dom(got) converges to X. Since f is continuous at x_0 , $f(x_0) \rightarrow f(x_0)$ Since $\breve{\diamond}$ s continuous at t(x), so $g(f(x_0))$, that is got(xn) got(x)

 $Sinkl$, $cos(x)$, e^x , $log(x)$, x^y for $p \in \mathbb{R}$
f(x)=c for cER $f(x)=c$ for $c\in\mathbb{K}$

By combining the previous theorems functions conclude more complicated functions are continuous on their domains

 e^{-x} , $sin(4 \log(x))$

Just like bounded sequences have important properties so do bounded functions

 $\frac{\text{Rel}}{\text{Rel}}\left(\text{bounded function}\right) : \text{if } i \leq \text{bounded on } S \in \text{dom}\{f\}$ $i \in \mathcal{F}$ there exists $m > 0$ s.t. $|f(x)| \in \mathsf{M}$ for all $x \in \mathsf{M}$ We say f is bounded if f is bounded on dom(f).

Remark Sn is ^a bounded sequence s in ϵ INJ is a bounded set f is ^a bounded function $f(x): x \in dom(f)^2$ is a bounded set $in \frac{11}{2}$

 $f(x) = \frac{1}{x}$
 $f(x) = \frac{1}{x}$ continuous on down $(f) = \mathbb{R} \setminus \{0\}$ · not bounded on dom(f) is bounded on any closed nterval [a,b] = Dom(-MAJOR THEOREM & this is true for all \overline{b} ontinuous functions Thro Cats fors attain max and min): A continuous function f on a closed interval [a₁b] = dom(f) attains its maximum and minimum. In particular... i) its max and min exist (so + is bounded)

 $f(x_{min})$ \in $f(x)$ \le $f(x_{max})$ for all \propto ϵ [a, b]

maximum of
fon [a,b]

 i) \pm γ π α κ γ π α ϵ α β β so that

minimum of maximum

Before we turn to the proof, recall that if $\frac{1}{5}$ α $\frac{1}{10}$ and α $\frac{1}{$

$\frac{1}{2}$ $SSkep$ 1 We will show that f is bounded on le. Assume, for the sake of contractiction, that
I is not bounded on (a_1b_1) , that is, for all m \geq \circ , there exists $x \in [a,b]$ s.t. 0 $F(x)$ $>$ M .

In particular, for all neIN, there exists x_n ([a,b] so that If(xn) | >n. Since xn
is a bounded sequence, by Bolgano is a bounded sequence, by Bolzano
Weierstruss Theorem, it has a $subsequence$ $\chi_{n_{k}}$ that converges to χ_{k} $k \in N$, x Since $\frac{e}{x_{nk}}$ $\frac{e}{a_{n}}$ for all $k \in [N]$, $\frac{x_{nk}}{a_{nk}}$ [a,b Thus, $\lim_{k \to \infty} \chi_{n_k} = \chi_0^0$, but $|f(\chi_{n_k})| > n_k \geq k$ $sosh\left(\frac{1}{k}\right)$ $\frac{1}{k}\left(\frac{1}{k}\right)$ $\frac{1}{k}$ $\frac{1}{k}\left(\frac{1}{k}\right)$ doesn't converge.
 $\begin{array}{ccc} \text{For } n \neq 0, \text{ and } n = t, \text{ if } n = 1 \$ then $lim_{n\to\infty} |t_n| = |t|$ This contradicts the fact that f is continuous Therefore ^f is bounded on $[a,b]$.

 $Step 2$ We will show that f attains its $maximum$ on $[a,b]$. Since f is bounded $[a,b]$, we know $\{f(x):x^{\epsilon}[a,b]\}$ is a bounded subset of IK, so supitix : xelabli=M

Since M is the least upper bound,
for all ne/N, M-t is not an upper $Hornol$, so there exists $xn \in [a,b]$ st. $M 1 \geq f(x_n) > m - \frac{1}{n}$. By the Squeeze

Since x_n is bounded, by the Bolzano Jeierstrass Theorem, it has a convergent subsequence $x_{n_{k-1}}$ with $lim_{k\to\infty} \chi_{n_k}$ = χ_{0} ϵ $[a_1b]$. Usince f is continuous, $f(x_{n_k}) = f(x_0)$. Since $f(x_{n_k})$ is a subsequence of the convergent sequence
f(xn), ksd f(xnk) = f(xo) = m.

 T herefore $f(x_0) =$ sup? $f(x):x \in [a,b] \geq f(a)$ for all χe $|a_1b_1|$, so χ is the maximizer

Multiplying this inequality by -1 ,
we see flox.) $5f(x)$ for all $x^{\frac{1}{2}}[a,b]$ Thus, I attains its minimum at x1