

Often, the easiest way to prove that a function is continuous is to show that it is a combination of simpler continuous fus (f+q)(x) = f(x) + q(x), $dom(f+q) = dom(f) \wedge dom(q)$

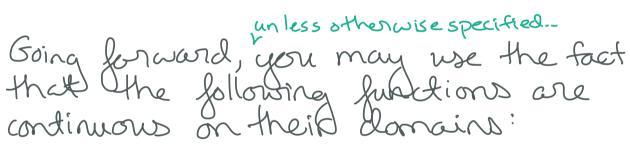
 $\begin{aligned} & (f+q)(x) = f(x) + q(x), \ dom(f+q) = dom(f) \wedge dom(g) \\ & (fq)(x) = f(x)q(x), \ dom(fq) = dom(f) \wedge dom(g) \\ & (fq)(x) = \frac{f(x)}{q(x)}, \ dom(\frac{f}{q}) = dom(f) \wedge dom(g) \wedge \tilde{x} \cdot q(x) \neq 0 \\ & (q \circ f)(x) = q(f(x)), \ dom(q \circ f) = dom(f) \wedge \tilde{x} \cdot f(x) \in dom(g) \\ & (q \circ f)(x) = q(f(x)), \ dom(q \circ f) = dom(f) \wedge \tilde{x} \cdot f(x) \in dom(g) \\ \end{aligned}$

The (sum, product, quotient cts fns): If f and g are continuous at $x_0 \in \mathbb{R}$, then (a) ftg is continuous at x_0 (b) fg is continuous at x_0 (c) $\frac{f}{g}$ is continuous at x_0 , provided $g(x_0) \neq 0$.

lf: Let h=f+q, h==fq, h==fq. For i=1,2, and3, take xn=dom(hi) that converges to xo. We aim to show hilxin) converges to Chilxo). Since f and g are continuous functions, f(xin) converges to f(xs) and g(xin) (onverges to g(xs).

- •Since the limit of a sum is the sum of the limits, $f(x_n^{\pm}) \neq q(x_n^{\pm}) \Rightarrow f(x_0) \neq q(x_0)$, that is $h_{\pm}(x_n^{\pm}) \Rightarrow h_{\pm}(x_0)$. This shows (a).
- Since the limit of a product is the product of the limits, flxin) g(xin) > flxolg(xo), that is, he(xin) > hetxd). This shows (b).
- Since the limit of a quotient is the quotient of the limits (and we decked that we never divide by zero) $\frac{f(x_n)}{g(x_n)} \longrightarrow \frac{f(x_n)}{g(x_n)},$ that is $h_s(x_n) \longrightarrow h_s(x_n)$. This shows (c). \Box

Thm: (composition of cts fus) Suppose f is continuous at x. and g is continuous at f(x.). Then gof is continuous at x. Pf: Suppose xn & dom(gof) converges to x. Since f is continuous at x. f(x.).? f(x.). Since q is continuous at f(x.), so g(f(xn)) g(f(x.)), that is gof(xn) = gof(x.).



sin(x), cos(x), e*, log(x), xP for peR, f6x)=c for cER

By combining the previous theorems, you may conclude more complicated functions are continuous on their domains:

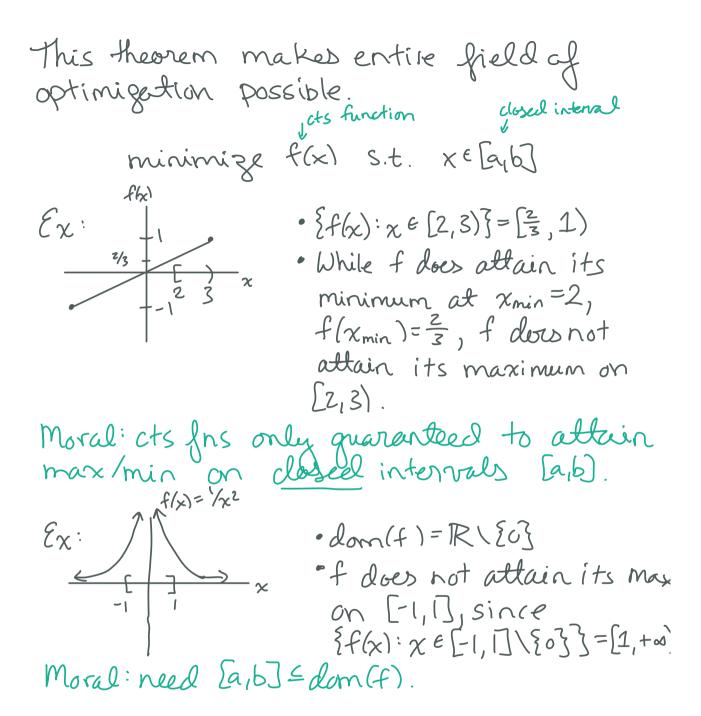
 $e^{-\chi^2}$, Sin(4log(x)),...

Def (bounded function): f is bounded on S=dom(f) if there exists M>O s.t. $|f(x)| \leq M$ for all $x \in S$. We say f is bounded if f is bounded on dom(f).

Remark: Sn is a bounded sequence Isn:nEINIG is a bounded set f is a bounded function If Ef(x): xEdom(f)ig is a bounded set image(f)

f(x)=六 Ex: · continuous on dom (f)= IR \ 203 ·not bounded on lom(f) " is bounded on any closed \rightarrow interval [a,b] = dom(f) MAJOR THEOREM & this is true for all continuous functions! Thm (cts fis attain max and min): A continuous function f on a closed interval [a,b]=dom(f) attains its maximum and minimum. In particular... (i) it's max and min exist (so f is bounded) (ii) I maximizer Elab So that

 $f(x_{\min}) \in f(x) \leq f(x_{\max})$ for all $x \in [a, b]$ minimum of for [a,b] maximum of for [a,b]



Before we turn to the proof, recall that if limb n=>00 Xn=X0 and Xn = [a,b] Vn, then Xo = [a,b].

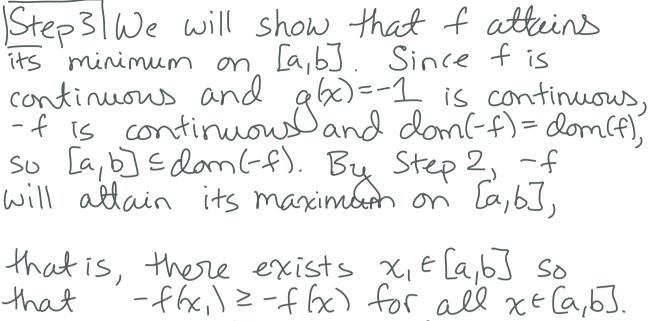
<u>Pf:</u> <u>IStep 1</u> We will show that f is bounded on [a,b]. Assume, for the sake of contractiction, that f is not bounded on [a,b], that is, for all M=0, there exists $\chi \in [a,b]$ s.t. $IGO(1) \ge M$.

In particular, for all nEIN, there exists $x_n \in [a,b]$ so that $|f(x_n)|^{2n}$. Since x_n is a bounded sequence, by Bolgano-Weierstrass Theorem, it has a subsequence x_{n_k} that converges to x_s . Since $x_{n_k} \in [a,b]$ for all $k \in IN$, $x_o \in [a,b]$. Thus, $k = x_o$, but $|f(x_{n_k})| > n_k = K$, so $k = x_o$, but $|f(x_{n_k})| > n_k = K$, so $k = x_o$, but $|f(x_{n_k})| > n_k = K$, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$, ter, then $\lim_{n \to \infty} t_n = t$. Step 2 We will show that f attains its maximum on [a,b]. Since f is bounded [a,b], we know {f(x): xe[a,b]} is a bounded subsct of IR, so supEf(x): xe[a,b]]= M for some MEIR.

Since M is the least upper bound, for all ne/N, $M-\dot{n}$ is not an upper bound, so there exists $x_n e[a,b]$ s.t. $M \ge f(x_n) > M-\dot{n}$. By the Squeeze Lemma, $\overset{ii}{n} = f(x_n) = M$.

Since xn is bounded, by the Bolzano-Weierstrass Theorem, it has a convergent subsequence xn_k , with $\lim_{k \to \infty} xn_k = x_0 \in [a_1b]$. Since f is continuous, $\lim_{k \to \infty} f(xn_k) = f(x_0)$. Since $f(xn_k)$ is a subsequence of the convergent sequence f(xn), $\lim_{k \to \infty} f(xn_k) = f(x_0) = M$.

Therefore $f(x_0) = \sup\{f(x): x \in [a,b]\} \ge f(x)$ for all $x \in [a,b]$, so x_0 is the maximizer.



Multiplying this inequality by -1, we see $f(x_1) \leq f(x)$ for all $x \in [a,b]$. Thus, f attains its minimum at x_1