Exercise 16

\n© Katu Cauq, 2024

\nNo w onto second key property of continuous functions.

\nunder theorem 7

\nThm (Intermediate Value Theorem):

\nThen for all a,b \in I, if y does between floating the form (b) then for all a,b \in I, if y does between disjoint the form (b) then the exists
$$
x
$$
 between a and b set. $f(x)=y$.

\neither $azx \in b$ or $azx \in b$ and $azx \in b$.

\nGiven a $azx \in b$ or $bzx \in \alpha$.

\nHint:\n
$$
f(x) = \begin{pmatrix} 1 & 1 \\
$$

Pf: Fix a, be I. We may assume a Eb.
Suppose y lies between f(a) and f(b).

Case $1: f(a) \leq y \leq f(b)$ We aim to show $\exists x \in [a,b]$ s.t. $f(x)=y$.

Define S = {x=[a,b]:f(x) = y} and let χ_o = sup(s). For all ne/N, $\chi_o^{\prime\prime}$ - $\frac{1}{n}$ is not an upper bound S, so there exists $x_{n} \in S$ satisfying $x_0 - \frac{1}{n} \leq x_n \leq x_0$. By the
Squeeze Lexama, $\lim_{n \to \infty} x_n = x_0$. Furthermore,
since $x_n \in S$, $f(x_n) \leq c$, Thus $f(x_0) = \lim_{n \to \infty} f(x_n) \leq c$

It remains to show $f(x_0) \geq y_1$. It $x_0 = b$ j
St by assumption $t(x_0) = t(b)^2$ y
have proved theresult. It and we have proved the result. $\pm\frac{1}{2}$ $\frac{x}{5}$ $\frac{6}{1}$ define $tn = min\{b, x_{0} + \frac{1}{n}\}$. By definition x_0 ² tn $\leq x_0 + \frac{1}{n}$, so the Squeeze Hemma $mgwe$ $\frac{lim}{h}$ $\frac{1}{h}$ $\frac{1}{$ $\{m\mathcal{F}}\searrow$, SO thr $\sum_{\mathbf{k}}$ for all ⁿ Since f is continuous \bigcirc $lim_{n\rightarrow\infty} f(t_n) = f(x_0)$ $($ ase $2 \cdot f(a) \leq y \leq f(b)$ Consider the Continuous function -f. Consider the continuous function - t Then $-t\omega$ y $Then 7+1a)= -q 5-f(b).$
There exists $x_0 \in [a,b]$ s.t. $- f(x_0) = -1$ Thus $f(x) = y$.

Thus $f(x) = y$.
 $f(x) = y$.
 $f(x) = y$. Morals continuous functions don't have jumps ^a continuous function always attains intermediate values