Lecture 16
© Katy Craig, 2024
Now onto second key property of
continuous functions!
IMAJOR THEOREM 7
The (Internediate Value Theorem):
If f is continuous on an interval I = dom(f),
then for all a, be I, if y lies between f(a) and f(b)
then there exists x between a and b s.t. f(x)=y.
either f(a) = y = f(b) or f(b) = y = f(a)
either a = x = b or b = x = a

$$f(x)$$

 $f(x)$
 $f(x$

Pf: Fix $a,b \in I$. We may assume $a \leq b$. Suppose y lies between f(a) and f(b).

Case 1: $f(a) \leq y \leq f(b)$ We aim to show I x [a,b] s.t. f(x)=y.

Define $S = \{x \in [a,b] : f(x) \leq y\}$ and let $x_0 = \sup(S)$. For all $n \in IN$, $x_0 - n$ is not an upper bound S, so there exists $x n \in S$ Satisfying $x_0 - n \leq x_n \leq x_0$. By the Squeeze Lemma, $n \leq x_n = x_0$. Furthermore, since $x n \in S$, $f(x_n) \leq y$. Thus $f(x_0) = \lim_{n \to \infty} f(x_0) \leq y$.

It remains to show fixe) = y. If x. = b, by assumption $f(x_0) = f(b) \ge y$, and we have proved the result. If $x_0 < b$, define $tn = min \ge b$, $x_0 + m$. By definition xo < tn < xo + h, so the Squeeze Lemma ensures into tn = xo. Since tn > xo=suplis), tn \$ S, so f(tn) > y for all n. Since f is continuous, y = h=> f(tn) = f(xo). $(abe 2: f(a) \ge y \ge f(b))$ Consider the continuous function -f. Then $-f(a) \leq -g \leq -f(b)$. By (are 1, there exists $\chi_0 \in [a,b]$ s.t. $-f(\chi_0) = -g$. Thus flool=y. the to Morals: O continuous functions don't have jumps Da continuous function always attains intermediate values