<u>Lecture 2</u> C Katy Cruig, 2024 Recall:

 $N = \{1, 2, 3, ..., 7\}$ Natural Numbers 2/= 2,-1,0,1,2,...3 Integors $Q = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \}$ Rational Numbers Real Numbers R = ?notobvious NFZFQFR 1 Prop: NZ & Q Moral: there are useful numbers missing from Q. To prove this, we will first prove a lemma Lemma: Let x & Z. If x² is even, then x is even. Pl: Assume, for the sake of contradiction, that χ is odd, so $\exists y \in \mathbb{Z}$ so that $\chi = 2y+1$.

Then
$$\chi^2 = (2y+1)^2 = 4y^2 + 2y+1$$
.

So χ^2 is odd, which is a contradiction. \square Question: how is proof by contradiction related to proving the contrapositive? For this lemma... P $Lemma: Let x \in \mathbb{Z}$. If x^2 is even, then x is even. x is even. Proving "If P, then Q" is equivalent to proving the contrapositive "If 7QO then 7P". xisodd x² is odd

PJ that
$$\overline{J2 \not\in Q}$$
:
Assume, for the sake of contradiction, that
 $\overline{J2 \in Q}$, so $\exists m, n \in \mathbb{Z}$ with $n \neq 0$ so that
 $\overline{J2 = \frac{m}{n}}$.
We may choose m and n so they $\exists \not\in \frac{\pi}{n}$.
We may choose m and n so they $\exists \not\in \frac{\pi}{n}$.
Squaring both even.
Squaring both sides, we obtain
 $2 \in \frac{m^2}{n^2} \Longrightarrow 2n^2 = m^2$.
Since m^2 is even, lemma ensures m is even,

so $\exists y \in \mathbb{Z}$ so that m = 2y. Substituting into (t), $2n^2 = (2y)^2 = 4y^2 = 2y^2$, so n^2 (is even, and over termina ensures <u>n</u> is even.

This contradicts \$\$. Therefore \$2\$R. []

So what is IR?

In order to define IR, we will begin by defining what it means to be an <u>ordered</u> field

Del: (field): A set F is a <u>field</u> if it has two operations (addition and multiplication) that satisfy the following properties Va, b, cf.

(A1) a + (b+c) = (a+b) + c(A2) a+b = b+a(A3) \exists an element in F called O s.t. $\forall a \in F, a+0=a$ (A4) for each $a \in F, \exists an element$ called $-a \in F$ s.t. a+(-a)=0

associativitu commatativity dentity inverse

(m1) a(bc) = (ab)c
(m2) ab=ba
(m3) ∃ an element in Fcalled 1
s.t. 1≠0 and ∀aeF, a·1=a
(m4) for each aeF, a≠0, ∃ an element (alled a s.t. a·a=1)

associativity commatativity identity inverse

 $(D_{1}) a(b+c) = ab + ac$

distributive law

Using the definition of a field, you can
rigorously prove fomiliar algebraic properties.
Thm: If F is a field, then
$$\forall a, b \in F$$
:
(i) If $a+c=b+c$, then $a=b$
(ii) $a\cdot 0=0$

P1:
First, we will show (i). By (A4), there
exists
$$-c \in F$$
 s.t. $c + (-c) = 0$. Thus,
 $a+c=b+c \Longrightarrow (a+c)+(-c) = (b+c)+(-c)$
(A1)
 $\Longrightarrow a+(c+(-c)) = b+(c+(-c))$
 $(A4)$
 $\Longrightarrow a+0 = b+0$
(A3)
 $a=b$

We now show (ii). By (A3),
$$0+0=0$$
, so
 $a \cdot (0+0) = a \cdot 0 \stackrel{(D2)}{=} a \cdot 0 + a \cdot 0 = a \cdot 0$
(A3)
 $a \cdot 0 + a \cdot 0 = a \cdot 0 + 0$
 $(A2)$
 $a \cdot 0 + a \cdot 0 = 0 + a \cdot 0$
 $(A2)$
 $a \cdot 0 + a \cdot 0 = 0 + a \cdot 0$
 $(A2)$
 $a \cdot 0 = 0$