<u>Lecture 2</u> S Katy Crisic, 202

Natural Numbers $N = \{1, 2, 3, ...\}$
Integers $Z = \{1, 2, 3, ...\}$ Integers $Z = \{-1, 0, 1, 2, ...\}$
Rativial Numbers $Q = \{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\}$ $\begin{aligned} &\mathbb{Q}=\{\frac{m}{n}:m,n\in\mathbb{Z},n\neq\sigma\} \\ &\mathbb{R}=7 \end{aligned}$ Real Numbers
not obvious $NSTZ \subsetneq Q \subsetneq R$ $\frac{1}{\sqrt{2}}$ $Prop: \sqrt{2} \notin \mathbb{Q}$ \mathbf{I} Moral: there are useful numbers missing from Q. To prove this, we will first prove a lemma <u>Lemma</u>: Let $x \in \mathbb{Z}$. If x^2 is even, then is even $PR: Assume, for the sake of contraction
That x is odd, so $\exists u 67$ so that $x=2$$ that χ is \circ odd, so \pm ye ℓ so that $x=2y+$

Then $\chi^2 = (2y+1)^2 = \frac{4y^2+2y}{e^x}$

So x^2 is odd, which is a contradiction. D Question: how is proof by contractiction p_{max} the contrapositive For this lemma \vdash <u>Lemma</u>: Let $x \in \mathbb{Z}$. If x^2 is even, then $\frac{x}{Q}$ is even. Proving $LF P$, then Q is equivalent to proving the contrapositive
"If 7 Q () then 7 P" $Lf \rightarrow QO$ then $\supset P$ x^2 is odd

Of that
$$
\sqrt{2} \leq 0
$$
:

\nAssume, for the sake of the $\sqrt{2}$ with $n \neq 0$ so that $\sqrt{2} = \frac{m}{n}$.

\nUse $\frac{1}{2} = \frac{m}{n}$.

\nWe may choose m and n so $\frac{1}{2} \leq \frac{1}{2}$.

\nByusing both sides, the $\frac{1}{2} \leq \frac{m^2}{n^2} \Rightarrow \frac{2n^2 = m^2}{n^2}$.

\nSo $\frac{1}{2} \leq \frac{m^2}{n^2} \Rightarrow \frac{2n^2 = m^2}{n^2}$.

Since m^2 is even, lemma ensures misever so y 2 so that ^m 29 Substituting into (x) , $2n^2 = |2u|^{2} = 4u^2 = 2u^2 = 2u^2$ ensures n is even.

This contradicts $X \times T$ Therefore $J2 \notin \mathbb{Q}$. \Box So what is \mathbb{R}^7 .

In order to define IK, we will begin by
Chring, what it means to be an ordered defining what it means to be an <u>ondered</u> field

Def: (field): A set F is a field if it has two that satisfy the following properties tappet:

(A1) α +(b+c) = (α +b) +c

(A2) α +b = b+a commutativity

(A3) \exists an element in Fcalled O identity s.t. $\forall a \in F$, $a+0=a$ $(A4)$ for each $a \in F$, \exists an element inverse called $-a \in F$ s.t. $a+(-a)=0$

 $(m1)$ albc) = lab)c associativity
(m2) ab = ba commutativity
(m3) I an element in Fcalled 1 identity $s.t.$ $1 \neq 0$ and $\forall a \in F$, $a \cdot 1 = a$ $(m4)$ for each a ϵF , a \neq 0, \exists an inverse element called $\dot{\overline{a}}$ s.t. $\alpha \dot{\overline{a}}$ =1

 (D_1) albtc) = ab tac distributive law

Remarks IN and ^I aren't fields is ^a field Mn IR isn't ^a field for ⁿ 2

Using the definition of a field, you can
rigobously prove familiar algebraic properties.
This: If F is a field, then
$$
\forall a,b \in F
$$
:
(i) If $atc=b+c$, then $a=b$
(ii) $a:0=0$

$$
\begin{array}{ll}\n\text{PQ:} \\
\text{First, we will show (i).} & \text{By (A4), } \text{There} \\
\text{exists } -c \in F \text{ s.t. } c + (-c) = 0. \text{ Thus,} \\
\text{a+c} = b+c \implies (\text{a+c}) + (-c) = (b+c) + (-c) \\
& \implies \text{a+c} + (-c) = b + (c + (-c)) \\
& \implies \text{a+c} + 0 = b + 0 \\
& \implies \text{a = b}\n\end{array}
$$

We now show (ii). By (A3),
$$
0+0=0
$$
, so
\n $a \cdot (0+0) = a \cdot 0 \implies a \cdot 0 + a \cdot 0 = a \cdot 0$
\n $\begin{array}{r} (A3) \\ (A3) \\ (A2) \\ (A2) \\ (A2) \\ (A3) \\ (A4) \\ (A5) \\ (A2) \\ (A \cdot 0) = 0 \implies a \cdot 0 = 0 + a \cdot 0 \implies a \cdot 0 = 0 + a \cdot 0 \implies a \cdot 0 = 0 \implies a \$