

Def lordered field A field F is an <u>ordered</u> <u>field</u> it it has an ordering relation so that, for all $a,b,c \in F:$

 (a) either $a \leq b$ or $b \leq a$ (01) either $a \leq b$ or $b \leq a$ totality
(02) if $a \leq b$ and $b \leq a$, then $a \leq b$ antisymmetry
(03) if $a \leq b$ and $b \leq c$, then $a \leq c$ transitivity 103 if a sb and b sc, then a sc transit Nity tot if $a 5b$, then $at c 5b+c$ addition 105) if a \leq b and c \geq 0, then ac \leq bc multiplication

 $\bigotimes_{i\in\mathbb{C}} s_i$ is inequal ordered field F and $a_i b^{e+1}$ if a \leq b and a \neq b, then write a \leq b

On an ordered field, we can define
the notion of maximum or minimum
of a set. of ^a set Def (maximum, minimum): Suppose SSF, where
Fis an ordered field. . If there exists Sse S satisfying so 25 for all seS, then so is the naximum of S and write so=maxl so is the largest element in the set $-$ f there exists s_{s} s satisfying s_{s} \leq s for all $s \in S_1$ then s_0 is the $minimum$ of S and write so= $min(S)$. Inso is the smallest element in the set"

Ex Let ^F be an ordered field Any finite set $S = \{s_1, s_2, \dots, s_n\}$ =f
hand a maximum and minimum has ^a maximum and minimum

Let $F = Q$. Fix $a_1 b \in Q$ with $a < b$, does not exist If $S = \mathbb{N}$, $min(S) = 1$, $max(S)$ $D.N.E.$ $\exists F$ $S = \{ q \in \mathbb{Q} : a \leq q < b \}$, min(s) = a

Claim: max(S) D.N.E.

Pl of Claim Assume, for the sake of
contradiction, that $s_0 = max(S)$. Since $s_{0} \in S$, so $a \in s_{0} < b$. Since Q is dense in Q , \exists re $\&$ so that s , $\leq r \leq b$. Thus $r \in S$. This contradicts that $s_0 = max(S)$.

Likewise, on an ordered field, we can define what it means for a set to be bounded above or below

Def: (bounded above/below): Suppose SSF
for an ondered field F. for an ordered field ^F Lf there $exisfs$ $N\lfloor ef$ $S \cong M$ V ses, then S is bounded above and ML is an upperbound of S If there $exists$ $m^{e}F$ $s \geq m$ $\forall s \in S_1$ then S is bounded below and m'is a lower bound of S. . If S is bounded above and bounded below, then S is bounded.

$$
\mathcal{E}_{\chi}: F = \mathbb{Q}_{1} a_{1} b \in \mathbb{Q}_{1} a \leq b
$$

\n $S = \{ a \in \mathbb{Q} : a \in a \leq b \}$ is bounded
\n $S = \mathbb{Z}$ is not bounded

VOTE Unlike the maximum of a set, the upper bound of a set doesn't need to belong
to the set. What about when a set "almost" has a maximum?

Def supremum infinum Consider an ordered field F . If SEF is bounded above and there exists Moef Satisfying. a) Mo is an upper bound of S
a) Mo is an upper bound of b) if M is an upper bound $\bigcup_{o\in S} S$ then $M_0 \leq M_1$ we say
und wh M_o is the supremum of S $\lim_{n\to\infty}$ white m_o = Sup(S) T"Mo is the least upper bound" If SEF is bounded below and there $exist_{S}$ $m_{o}\epsilon_{f}$ a) mo is a lower bound of S
a) mo is a lower bound of (b) if m is a lower bound $\bigcup_{\alpha₁} S_1$ L then $m_0 \ge m$ we say
und wh m_0 is the infinum of S and write $m_0 = i \sqrt{S}$
 $\frac{S}{S}$ maje the areatest blue Mo is the greatest bluer bound

$$
Ex: F = Q, a,b \in Q, a \in b
$$

\n $S = \{e \in Q : a \in q \in b\}$
\nClaim: sup(s)=b
\n $Qf: Bg$ definition of S, b is an upper
\n $VseS$. If suffices to show b=M.
\nSince s=M $VseS$, $a \in M$.
\nAssume, for the sake of contradiction,
\nthat b=70. By density of U in Q, free
\nst. M $\leq r \leq b$. Thus 0 $0 \leq s$. This
\ncontradicts that M is an upper bound
\nof S. The
\n Ue conclude b= sup(S).
\n $10 \leq r \leq m$
\n $10 \leq r \leq m$
\n $11 \leq m \$

ii) If min(s) exists, then $in($ (s) = $min($

Moral: The notion of supremum is a generalization of the notion of maximum

Elex: Ireal numbers! The set of real numbers
is the ordered field containing Q is the ordered field containing IV.
with the property that every with the property that
nonempty subset SS. $normpty$ subset SFR that is bounded above has ^a supremum "The Least Upper Bound Property of \hat{R} " Thm[:] The real numbers exists.