

Def lordered field: A field F is an ordered field if it has an ordering relation = so that, for all a,b,c E:

(01) either a ≤ b or b ≤ a (02) if a=b and b=a, then a=b (03) if a \leq b and b \leq c, then a \leq c (04) if a ≤ b, then at c ≤ b+c (05) if a = b and c=0, then ac = bc multiplication

totality antisymmetry transitivity () addition ()

Def: Given an ordered field \neq and $a,b \in F$, if $a \leq b$ and $a \neq b$, then write a < b.

On an ordered field, we can define the notion of maximum or minimum of a set. Def (maximum, minimum): Suppose S=F, where F is an ordered field. • If there exists se S satisfying So=S for all seS, then so is the maximum of S and write so=max(S). "so is the largest element in the set" If there exists so S satisfying So S for all seS, then so is the minimum of S and write so=min(S). "so is the smallest element in the set"

Ex: Let F be an ordered field. Any finite set $S = \{s_1, s_2, ..., s_n\} \in F$ has a maximum and minimum.

Let F = Q. Fix $a, b \in Q$ with a < b. does not exist If S = IN, min(S) = 1, max(S) D.N.E. If $S = Eq \in Q$: $a \le q < B^2$, min(S) = a

Claim: max(S) D.N.E.

Pl of Claim: Assume, for the sake of coathediction, that $s_0 = \max(S)$. Since $s_0 \in S$, so $a \leq s_0 < b$. Since Q is dense in Q, $\exists r \in Q$ so that $s_0 < r < b$. Thus $r \in S$. This contradicts that $s_0 = \max(S)$.

Likewise, on an ordered field, we can define what it means for a set to be bounded above or below.

Def: (bounded above/below): Suppose S≤F
for an ordered field F.
If there exists M∈F satisfying s≤M Vs∈S, then S is bounded above and M is an upper bound of S.
If there exists m∈F satisfying s≥m Vs∈S, then S is bounded below and m is a lower bound of S.
If S is bounded above and bounded below, then S is bounded.

$$E_{X}: F = Q, a, b \in G, a < b$$

 $S = \{q \in Q: a \leq q < b\}$ is bounded
 $S = \mathbb{Z}$ is not bounded

NOTE: Unlike the maximum of a set, the upper bound of a set doon't need to belong to the set. What about when a set "almost" has a maximum?

<u>Wel</u>(supremum/infimum): Consider an ordered field F. • If S=F is bounded above and there exists MoeF Satisfying. [(a) Mo is an upper bound of S (b) if M is an upper bound of S, then $M_0 \leq M$ we say Mo is the <u>supremum</u> of S and write Mo=sup(s). Timo is the least upper bound" · If S=F is bounded below and there exists moeF satisfying. (a) mo is a lower bound of S (b) if m is a lower bound log S, _ then mo≥m we say no is the infimum of S and write mo=inf(S). "" mo is the greatest bluer bound"

Exi
$$F = Q$$
, $a, b \in Q$, $a \leq b$
 $S = \{q \in Q : q \leq q \leq b\}$
Claim' $sup(S) = b$
Pl: By definition of S, b is an upper
bound of S. Fix $M \in Q$ s.t. $s \in M$
 $\forall s \in S$. It suffices to show $b \leq M$.
Since $s \leq M$ $\forall s \in S$, $a \leq M$.
Assume, for the sake of contradiction,
that $b \geq M$. By density of Q in Q, $\exists r \in Q$
s.t. $M \leq r \leq b$. Thus 0 $\forall r \in S$. This
contracticts that M is an upper bound
of S. Therefore $b \leq M$.
We conclude $b = sup(S)$.
 $Prove on HW$
Thm Consider an ordered field F and $S \leq F$.
(i) If max(S) exists, then $sup(S) = max(S)$.
(ii) If min(S) exists, then $ing(S) = min(S)$.

Moral: The notion of supremum is a generalization of the notion of maximum.

Def: (real numbers): The set of real numbers is the ordered field containing Q with the property that every ronempty subset SSR that is bounded above has a supremum.)) "The Least Upper Bound Property of R" Thm: The real numbers exists.