<u>Lecture3</u> - Math movie competition KatyCraig ²⁰²⁴

Def lordered field A field F is an ordered field it it has an ordering relation so that, for all $a,b,c \in F:\bigcirc$

 (a) either $a \leq b$ or $b \leq a$ (01) either $a \leq b$ or $b \leq a$ totality
 (02) if $a \leq b$ and $b \leq a$, then $a \leq b$ antisymmetry $(a3)$ if a sb and b sc, then a sc transitivity tot if $a 5b$, then $at c 5b+c$ addition 105) if a \leq b and c \geq 0, then ac \leq bc multiplication

 $\bigcup_{i\in\mathbb{C}} s_i$ is iner an ordered field F and $a_i b^{e+1}$ if a \leq b and a \neq b, then write a \leq b

Def (maximum, minimum) Suppose SSF, where
Fis an ordered field. . If there exists so S satisfying so ZS for all $s \in S$, then s_0 is that naximum of S and write so=max1 so is the largest element in the set $-$ f there exists s_{s} S satisfying s_{s} \leq s for all $s \in S_1$ then s_0 is the $\frac{1}{n}$ inimum of S and write so=min($\frac{1}{n}$ so is the smallest element in the set Def: (bounded above/below): Suppose SSF
for an ordered field F. for an ordered field ^F Lf there $exisfs$ $N\lfloor ef$ $s \in M$ Y $s \in S$, then S is bounded above and M is an upper bound of: If there $exists$ $m^{e}F$ $s \geq m$ $\forall s \in S$, then S is bounded below and m' is a lower bound of S . . If S is bounded above and bounded below, then S is bounded.

Deff supremum infimum Consider an ordered field F · If SEF is bounded above and there
exists Mo E Satisfying... exists Mo^et Satistying.
a) Mols an upper bound if M is an upp a) I II. Is an upper bound as S
b) if M is an upper bound S
then $M_o \leq m$. we say
und wh we say Mo is the supremum of S
and write Mo=sup(s). (S) mo is the least upper bound . If SEF is bounded below and there exists moef Satisfuing... a) mo is a lower bound of S
a) mo is a lower bound of b) if m is a lower bound $log S$
then $m_0 \ge m$ - then $m_0 \ge m$ we say mo is the infimum of S
and write mo= inf(s). and write $m_0 = i \sqrt{(s)}$
 π_0 is a greater to π_0 mo is the greatest lowerbound

 $\frac{1 \text{ h} \text{m}}{1 \text{ T} + \text{m} \text{c} \text{x}(\text{c})}$ and $\text{c} \text{r}$ and $\text{c} \text{r}$ and $\text{c} \text{r}$ i) It maxis) exists, then $sup(S) = max(S)$ $\lim_{t\to 0} \mathcal{I}f$ min(s) exists, then $\inf_{t\to 0}$ in(IS) = min(s)

Moral: The notion of supremum is a generalization of the notion of maximum

Elex: Creal numbers! The set of real numbers
is the ordered field containing Q is the ordered field containing IV.
with the property that every with the property that
nonempty subset SS. $normpty$ subset SFR that is bounded above has ^a supremum "The Least Upper Bound Property of

Thm[:] The real numbers exists.

$$
\begin{array}{ll}\n\mathcal{E}x \to & \mathcal{E} = \mathbb{Q} \setminus a_0 \in \mathbb{Q} \setminus a_0 \in b \\
S = \{q \in \mathbb{Q} : a \in q \in b\} \\
\underline{\text{Claim}} \cdot \text{sup}(S) = b \\
\underline{\mathbb{Q}}\cdot \text{Equation of } S, b \text{ is an upper} \\
\overline{\text{bbund of } S} \cdot \text{Fix } \mathbb{Q} \text{ the } \mathbb{Q} \text{ s.t. } s \in \mathbb{M} \\
\text{We } S = S \quad \text{If } s \in S \text{ if } s \in \mathbb{Q} \text{ is a non-odd} \\
\text{Since } s \in \mathbb{M} \text{ and } s \in S, a \in \mathbb{M}.\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Assume, for the sake of contradiction,} \\
\text{that } b > M. \\
\text{But, } S = \mathbb{Q} \text{ and } \mathbb{Q} \text{ is a non-odd} \\
\text{that } b > M. \\
\text{But, } S = \mathbb{Q} \text{ and } \mathbb{Q} \text{ is a non-odd} \\
\text{that } s = m \text{ and } \mathbb{Q} \text{ is a non-odd} \\
\text{and } S. \\
\text{Therefore } b \in \mathbb{M}.\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{We conclude } b = \text{sup}(S). \\
\text{We conclude } b = \text{sup}(S).\n\end{array}
$$

prove on HW