<u>Lecture 4</u>
© Katy Cruice, 2024 We'll study two major theorems for IK Archimedeast Property and <u>W is dense in</u> MAJOR RESULT #1 \overline{I} Ihm (Archimedean Property): \overline{I} a, b ϵ IR satisfy $a > 0$ and $b > 0$, then there exists nEM so that na >b. Spoon bathtub Remark: Even it a is really small and
b is huge, some integer multiple of a is b is huge, some integer multiple of a is
biceser than b bigger than ^b 'Given enough time, one can empty a large bathtub with a small spoon! We will prove by contradiction. Scratchwork: $P = [V_{a,b} > 0, \exists$ ne N s.t. na b $TP = \boxed{3}$ a,b>0 s.t. \forall nel N , na \leq b \rfloor

 Pf Assume, for the sake of contradiction, That \exists a, b $\epsilon \dot{\mathbb{R}}$ with $\alpha > 0$, $\beta > 0$ s.t. for all ne/N, na=b. S_{α_1} $\{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_1, a_2, a_3, a_4, a_7, a_8, a_9, a_1, a_2, a_3, a_4, a_7, a_8, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_1, a_2, a_3, a_4, a_1, a_2, a_3, a_4, a_1, a_2, a_3, a_4, a_1,$ Define S= Ena in E/N3, so b is an upper
bound for S. Since S is a nonempty subset nonempty subset of IK that is bounded above, by defin of IK
Shas a supremim Deline So=sub (S). ^S has ^a supremum Define so sup ^S Since $a > 0$, we have $s_{0} - a < s_{0} < s_{0} + a$. Since so=sup^{cs)}, there exists n_e EN S.t. $S_{0} - \alpha \leq n_{0} \alpha \Rightarrow S_{0} \leq (n_{0} + 1)$ a $Since$ m_{o+1}) $a \in S$, this contradicts the fact that so is an upper bound of S. \Box

As a consequence of the Archimedean
Property, we have a few useful lemn Property we have ^a few useful lemmas

demma[:] For any L E IR, there exists n ϵ / N s.t. a \leq

 $P_1 = \{x \in P \mid x \in P\}$ then the result holds for $n =$ If as 8th then since ¹⁵⁸ by ^A ^P there exists $n \in \mathbb{N}$ s.t. $1 \cdot n > 8$.

<u>Lemma</u>: For any a_lbe \mathbb{R} , $a < b$, there exists nell so that $a + \frac{1}{n}$ b Mental image: \leftarrow $\begin{matrix} 11 & 0 \\ 0 & 0 \end{matrix}$

 ι spoon bathtub P_1 Let $y = b-a > 0$ and $1 > 0$. Isy A.F there exists ne/N s.t ba> $\frac{1}{n}$ \Leftrightarrow a<sup>+ $\frac{1}{n}$ < b. $\frac{1}{0}$ \leftarrow $\frac{1}{n}$ \leftarrow $\frac{1}{0}$ \leftarrow $\frac{1}{0$

demma: L $\{x,y \in \mathbb{R} \text{ satisfy } |\langle x-y \rangle\}$ then J me $_{4}$ so that $y < m < y$ Mental image C y there should the correctness in here $P_4: S_y$ the first lemma, there exists $n \in \mathbb{N}$
s.t. $O_{n>q}$. Define $S = \{j \in \mathbb{Z} : q < j \leq n\}$.

s.t. $w > u$. Define $S = \lambda j \in \mathbb{Z} : y < j \le n$
Then S is nonempty and finite, so
m=min(S) exists SR, defined m, m.e n=min(S) exists. Sy defn of m, me 4
Ism, and m-15y Thorelore. $y < m_1$ and $m - 1 \le y$. Therefore $y < m \leq |{}_{\mathsf{f}} y < \chi$ O J

Now, we will apply the previous lemma!
to prove... prove MAJOR THEOREM #2 $\frac{\text{Thm}(\text{Q} \text{ is dense in } \mathbb{R})}{\text{H}}$: $\frac{\text{Tr}_{\text{Q}} \text{a}_1 \text{b} \in \mathbb{R}}{\text{H}}$ with ack there exists r EQ satistying a<r< $\begin{array}{ccc} & & & r\in\mathbb{\Omega} & \\ \text{Menched image:} & & \xleftarrow{\hspace{13mm}} & & \downarrow\\ & & \mathsf{a}\in\mathbb{R} & & \mathsf{be}\in\mathbb{R} \end{array}$

This is similar to the result we proved on the first day that between any two rational 99 numbers there is a rational nu

 \mathbb{Z} : By the lemma, \exists ne/N s.t. at π
b \Leftrightarrow na+l
bn-an. By the => na+1<bn => 1<bn-an. Isy the
Sther lemma, there exists, ml = 2 so that $an < m < b$ n \Leftrightarrow a $< \pi < b$. \Box

We now have all the tools we need to rigorously prove our previous claims about the minimum maximum /infinum/ supremun of subsets of R! For example...

Now, we show sup(S) = b. Isy defin of S
b is an under bound Suppose mo b is an upper bound. Suppose Mo is another upper bound of S^{ε}_{\cdot} IF M_{o}
bound of S^{ε}_{\cdot} IF M_{o}
bound the model of then by density of $\bigotimes R$, \exists $\mathsf{r} \in \bigotimes$ s.t. m_0 < r \geq b_1 s_0 \in s , which is a contradiction Thus, $M_0 \geq b$, so b is the least upper bound. \Box

Going forward, we will use
$$
t^{\infty}
$$
 and $-^{\infty}$ to
\n $\sin\phi(t^{\infty})$ and notation for suprema and infima.
\n $Ex: (a, t^{\infty}) = \{x \in \mathbb{R} : a < x\} = \{x \in \mathbb{R} : a < x < t^{\infty}\}$

\nLet (unbounded above/below): Suppose $S \subseteq \mathbb{R}$ is normal.

\nIf S is not bounded above, write $\sin\theta(s) = -^{\infty}$.

\nRemark: Given a nonempty, $S \subseteq \mathbb{R}$,

\nRemark: Given a nonempty, $S \subseteq \mathbb{R}$,

\nBut depth of supremum and \mathbb{R} .

\nSo has a supremum $\Leftrightarrow S$ is bounded above $\Leftrightarrow \exp(s) \in \mathbb{R}$.

Similarly S doesn't have ^a supremum S is not bounded above

$$
\Leftrightarrow_{\text{sup}}(S) = +\infty
$$

Using this notation even though not every set has a supremum, for any
harempty $S \subseteq R$, sup (s) has meaking