Lecture 5
© Katy (raig, 2024 image
Ch 2: Sequences
Recall: functions
Del (sequence): A sequence is a function
whose domain is a set of the form
2m, mt 1, mt 2,...3 for come me Z. We
will study sequences whose range is R.
Typically, the domain of a sequence will be
either
$$\frac{1}{20}$$
, $\frac{1}{2}$, $\frac{2}{3}$, ...3 or $\frac{2}{2}$, $\frac{2}{3}$, $\frac{2}{3}$.
Remark:
To emphacing that a sequence is special
type of function...
instead of writing f(m), we write sn
We'll of less as if a sequence is here is shown

We'll often specify a segmence by listing its values in order, (s1, S2, S3, ...).

Ex: If $sn = \frac{1}{n}$ for $n \ge 1$, the sequence is $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$ • If $s_n = (-1)^n$ for $n \ge 0$, the sequence is (1, -1, 1, -1, ...)

Heuristically, a sequence "converges" to some limit sell if the values of sn stay close to s for large n.

• The number s is the <u>limit</u> of sn, and we write noosn=s or sn >s.

N1

NZ

Let $\varepsilon = 1$ and choose N so that n > Nensures $|(-1)^n - s| < 1 \ll s - 1 < (-1)^n < s + 1$. For n even, this implies |<s+| => 0 < s. For n odd, this implies s - 1 < -1 => s < 0. This is a contradiction. Thus, $(-1)^n$ diverges. \square

Ex: Consider the sequence
$$sn = \frac{2n-1}{3n+2}$$
.
What is the limit?

$$\frac{\text{Proof:}}{\text{Fix } \epsilon > 0 \text{ arbitrary and let } N = \frac{1}{\epsilon}. \text{ Then,} \\ \text{if } n > N, \text{ we have} \\ \frac{1}{\epsilon} < n = > \frac{7}{3(3n+2)} < \epsilon \iff \left|\frac{6n-3-6n-4}{3(3n+2)}\right| < \epsilon \iff \left|s_n - \frac{2}{3}\right| < \epsilon. \\ \text{Therefore, } \lim_{n \to \infty} s_n = \frac{2}{3}. \\ \square$$

Aspecial type of sequence is a ...

J. V () Deflounded sequence): A sequence sn is bounded if there exists MER s.t. IsnI=M foralln. $\langle = \rangle - M \leq s_n \leq M$ -M (Remark: A sequence is bounded iff the set S= { Sn: nelN{ is bounded. (HW3) $S_n = (-1)^n$, $S = \{-1, 1\}$, $S_n = \frac{1}{n^2}$, $S = \{1, \frac{1}{4}, \frac{1}{4}, \dots\}$ Ihm: Convergent sequences are bounded. Sn

P: Suppose sn is a convergent sequence With limit s. Then, for E=1, there exists WLOG, we may assume N=0 NETR so that n=N ensures |sn-s|<1 (=> - |< sn-s<1(=> s-1< sn< s+1. Let ~ Reverse sing)

$$M_{o} = \max \{|s+1|, |s-1|\}. \text{ Then } |s_{n}| - |s_{n}|$$

Thus, if n>N, we have
$$|Sn| \leq M_o$$
.
 $\max \{ |Sn| : | \leq n \leq N, n \in |N_f| \}$
Let $M_i = \max \{ |S_i|, |S_2|, |S_3|, ..., |S_N| \}$.
 $N_i = \max \{ m \in N \}$
Then, for $| \leq n \leq N$, $|S_n| \leq M_i$.
Finally, let $M = \max \{ M_o, M_i \}$. Then $|S_n| \leq M \forall n \in |N_i|$
so owe sequence is bounded.
 $Pemark$: The converse is not true, $Since not$
all bounded sequences are convergent,
 $e.g., (-1)^n$.