Now, we will prove several limit theorems that will help us find the limits of more complicated sequences by breaking them into parts.

$$(\chi: \lim_{n \to \infty} \left(\frac{\pi}{n} + \frac{\pi}{n^2}\right) = \lim_{n \to \infty} \frac{\pi}{n} + \lim_{n \to \infty} \frac{\pi}{n^2} = 0 + 0 = 0$$

Of: Let S= lim sn and t= lim otn. Fix E>O. We must show there exists NER so that n>N ensures ((sn+tn)-(s+t))<E.

Note that |(sn+tn)-(s+t)| ≤ |sn-s|+ |tn-t].

Since $sn^{3}s$ and $tn^{3}t$ given $\tilde{\varepsilon} = \frac{\varepsilon}{2} > 0$, there exists Ns and Nt εR so that n > Ns ensures $|sn-s| < \tilde{\varepsilon}$ and n > Nt ensures $|tn-t| < \tilde{\varepsilon}$. Let $N = \max\{Ns, Nt\}$. Then for all n > N. $|(sn+tn)-(s+t)| \leq |sn-s|+|tn-t| < \tilde{\varepsilon} + \tilde{\varepsilon} = \varepsilon$.

Remark: The requirement that sn and the are convergent sequences is necessary. For example, $Sn = (-1)^n$, $tn = (-1)^{n+1}$.

Then lim on the sist.

Thm (limit of product is product of limits): If sn and tn are convergent sequences, non sn tn = (lim sn)(lim

Exercise Give an example to show that the assumption that sn and tn are convergent sequences is necessary for the previous theorem to be true.

Since Sn is a convergent sequence, it is a bounded sequence, that is there exists Ms So that IsnIEMs for all n. Define M=max & Ms, It1, 13 ensures mems, moliti, m>0 Combining with estimates above, $|sntn-st| \leq M|t_nt| + M|s_n-s|$. For $\tilde{\epsilon} = \frac{\epsilon}{2m} > 0$, there exists Ns and Ne so that n > Ns ensures $|sn-s| < \tilde{\epsilon}$ and n > Nt ensures $|t_n-t| < \tilde{\epsilon}$. Let $N = \max\{Ns, Nt\}$. Then for all n > N, $|sntn-st| < M\tilde{\epsilon} + M\tilde{\epsilon} = \epsilon$.

Thm(limit of quotient is quotient of limits): If should the are convergent sequences,
$$sn \neq 0$$
 for all n , and $\lim_{n \to \infty} sn \neq 0$, then $\lim_{n \to \infty} \left(\frac{tn}{sn}\right) = \frac{\lim_{n \to \infty} tn}{\lim_{n \to \infty} sn}$.

Pf: See textbook.

Thm (basic examples): $\begin{array}{l} (a) \lim_{n \to \infty} (f_n)^p = 0 \quad \text{if } p^{>0} \\ (b) \lim_{n \to \infty} a^n = 0 \quad \text{if } |a| < | \\ (c) \lim_{n \to \infty} n^{1/n} = | \\ (d) \lim_{n \to \infty} a^{1/n} = | \quad \text{if } a^{>0} \end{array}$

Pf: See textbook.