Lecture 't Katy Craig, 202

 Ex : What is the limit of $sn = n^2$?

Itel (diverges to to or -a): A sequence sn diverges to to if for all Mso there exists NEIR so that n M ensures Sn M. Wewrite $lim_{n\rightarrow\infty}$ Sn = to.

Likewise, a sequence sn diverges to - a) if for all M<0 there exists N so that n >N
ensuries s_m <m sm $resuncos_{1}sn< M$. $s\nu_{1}$ We write $\lim_{n\to\infty}$ sn = - ∞ . \longrightarrow_{n} Remark

 \cdot If sn diverges to $\pm \infty$, it does not converge. . We will say that sn "has a limit" or "the limit of Sn exists" if either $lim_{n\rightarrow\infty}$ Sn $\epsilon \mathbb{R}$

Osn converges ω sn diverges to $\pm \infty$ limes sn $\{+\infty, -\infty\}$

et few limit theorems for sequences that diverge to to or $-\infty$

 α se $2: \frac{1}{n} \cdot \frac{1}{n}$ tn=t, +?0 Thm: Suppose was sn= + as and has tn?0. Then, $\lim_{n \to \infty}$ sntn = + ∞

 $\frac{7 \text{ N} \cdot \text{Suppose}}{\text{real number 1.} \cdot \text{Inen}}$ is a sequence of positive

 \mathcal{P} . First, suppose $\lim_{n\to\infty}$ sn=+ ∞ Fix E >0. Note that $|\overline{\xi_{n}}-0|<\xi\Longleftrightarrow\frac{1}{sn}<\xi\Longleftrightarrow\frac{1}{\epsilon}<_{sn}$, Since Sn diverges to $+\infty$, there exists N s.t. n > N ensure $s_{n} > \frac{1}{2} \Leftrightarrow |t_{n} - 0| < \epsilon$. Thus, $\lim_{n \to \infty} \frac{1}{s} n = 0$

Next, suppose h^{10} $\frac{1}{2}$ $\frac{1}{2}$ $sm > m \Leftrightarrow \frac{1}{sn} < \frac{1}{m} \Leftrightarrow | \frac{1}{sn} - o | < \frac{1}{m}$. Since $\frac{1}{sn}$ Converges to 0, there exists N s.t. $n > N$ $m_{\rm s}$ isn-01< $\frac{1}{m}$ (=) sn >M. Thus $m_{\rm s}$ is sn⁼¹

 $PQ: HW$.

 m_{max} : If $\lim_{n \to \infty} s_n = +\infty$, then $\lim_{n \to \infty} (-s_n) = -\infty$.

 \underline{P} : Fix M<0. Note that $(-sn)$ <m=> sn - M.
Since sn diverges to to, there exists N s.t. n = N,
 sn = - M (=> $(-sn)$ < M. Thus $\frac{lim}{n-2\infty}$ -sn = - ∞ .

Next time: monotone and Cauchy sequences

DefinitionGeasing/decreasing, functionless)

\nA sequence sn is increasing if sn²sn+1 M. \nA sequence sn is **decreasing** if sn²sn+1 M. \nA sequence sn is **thecreasing** if sn²sn+1 M. \nA sequence Sn is **monotone** \nOf if it is either increasing on decreasing. \n
$$
\frac{1}{2} \leq |\langle \frac{1}{2} \rangle^{m+1} \leq \frac{1}{2} \rangle^{n} \Leftrightarrow -\frac{1}{2} \rangle^{m} \leq -\frac{1}{2} \rangle^{m+1} \Leftrightarrow -\frac{1}{2} \rangle^{m+1} \Leftrightarrow -\frac{1}{2} \frac{1}{2} \frac{1}{2} \Leftrightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \Leftrightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \Leftrightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \Leftrightarrow \frac{1}{2} \frac{1
$$

Uf Suppose sn is a bounded, increasing
Seguence Deline S= Ssn:ne IN} Sequence Define $S = \frac{1}{2} S_n : n \in [N]$ Since Sn is a bounded Sequence, we have that S is a bounded set. By defin of IR
S has a supremume. We will show S has a supremum. We will show $lim_{n\to\infty}$ Sn = SUp(S).

rix E > 0. Since sup (S) is an upper bound
C = C = s = (S) = s = M = s = 1) = s = 0 For S , sup $(S) \geq Sn$ $\forall n \in \mathbb{N}$ and $simpls$ + ϵ > s_n \forall ne \bowtie . Since sup(S) is the least upper bound, $sup(S)$ - ε is not an upper bound of S
that is there exists $N \in \mathbb{N}$ s.t. $S_N > sup(S) - \epsilon$. Since Sn is increasing,
Sn $> sup(S) - \epsilon$ f n > N. Combining $H + (+x)$, we have \forall n $>$ N, $|_{Sn}$ -sup $|S| < \varepsilon$. Since ε > 0 was arbitrary,
 $\lim_{n \to \infty} s_n = \sup(S)$.

Mow suppose Sn is a bounded, decreasing seguence. Then sn is a bounded incr. $sequence.$ Thus $\stackrel{...}{\sim}$ - $\stackrel{...}{\sim}$ \stack $|{\sf h}e\circ e\circ \wedge$, $\sum_{n=-\infty}^{\infty}$ Sn = $\sum_{n=-\infty}^{\infty}$ Sn)-1)=-C. Hence Sn converges.