Lecture ⁸ Highlights KatyCraig ²⁰²⁴

Thm: If sn is an unbounded, increasing
segmence, then $lim_{n \to +\infty}$. If sn is an unbounded, decreasing sequence, then limsn=-00

In summary, if sn is monotone
 $\begin{cases} \n\lim_{n \to \infty} \sin \frac{1}{n} + \infty \\
\cos \frac{1}{n} + \infty\n\end{cases}$ if sn is unbdd above if Sn is unbold below

Therefore, for any monstone sequence sn, $lim \sin$ exists.

Wellinsup/liming): For any sequence sm, We have $S_n = \lim_{N \to \infty} \sup_{n \in \mathbb{N}} \{S_n : n > N\}$

March $S_n = \lim_{N \to \infty} \inf_{n \in \mathbb{N}} \{S_n : n > N\}$

Thm: Given a sequence sn,

 $\lim_{n\to\infty}$ \sup $\exp\left\{\frac{1}{n}\right\}$ $\lim_{n\to\infty}$ $\sup_{n\to\infty}$ \sup \sup

Furthermore, if either of these equivalent

Question J 3 on Practice Midterm 1 (a) Suppose A is bounded above. Prove that there exists a sequence a_n , satisfying ${a_n : n \in \mathbb{N} \subseteq A}$ and $\sup A - \frac{1}{n} \leq a_n \leq \sup A$ for all
 $n \in \mathbb{N}.$ (Hint: Prove the result by contradiction, using the fact that
 $\sup A - \frac{1}{n}$ cannot be an upper bound.) bound.) (b) Prove that the **c**ouence you found in the previous part satisfies $\lim_{n\to\infty} a_n = \sup A$. (c) Now suppose A is not bounded above. Prove that there exists a sequence a_n satisfying ${a_n : n \in \mathbb{N} \} \subseteq A$ and $a_n \geq n$ for all $n \in \mathbb{N}$.

(d) Prove that the sequence you found in the previous part satisfies $\lim_{n\to+\infty} a_n = \sup A$

In summary, you have proved the following important result: for any nonempty set $A \subseteq \mathbb{R}$, we may always find a sequence of elements a_n in A so that $\lim_{n\to+\infty} a_n = \sup A$.

a) Proof: Suppose A is a nonempty set
$$
A \in \mathbb{R}
$$
.
\nSuppose A is bounded above, then $3m \in \mathbb{R}$ s.t. $a_{\neq} \in \mathbb{M}$
\nBy continuous, there does not exist a sequence on satisfying
\n $\{a_{m} \cdot n \in \mathbb{N}\} \in A$ and such that $a_{m} \leq \sup A$ when $3m \in \mathbb{N}$. This is equivalent
\nof showing Y{a₁ in $n \in \mathbb{N}$ } $\leq A$, $3n \in \mathbb{N}$ s.t. $a_{m} \leq \sup A - 3n \in \mathbb{N}$ or $a_{m} > \sup A$.
\nSince A is nonempty and bounded above, $\sup A$ is $\lim_{n \to \infty} a_n \leq \sup A$.
\nSince by definition, $\sup(A)$ is the least upper bound, and $\sup A$ is
\n $\frac{a_{m+1}}{2} = a_{m+1} + a_{$

- c) Proof: Suppose A is not bounded above, we WTS \exists an s.t. $\{a_n : n \in \mathbb{N}\}\subseteq A$ and $a_n \geq n$ the μ . Fix $n \in \mathbb{N}$. Let $\alpha_n = n^2$. then an is not bounded above. Since $n \in \mathbb{N} \subseteq \mathbb{R}$, $n^2 \in \mathbb{R}$, thus $\{an \cdot n \in \mathbb{N}\} \leq A$ S ince n E I S , n $E \ni S$ n $n \geq 1$ n $n \geq n$ and $n \geq n$ H Therefore, such an exists.
- d) Proof: Since A is not bounded above, by definition, $sup(A) = +\infty$. $Fix m > 0$ $let m=N, Yn > N, a_n \ge n > N = m$. Thus an $> m$ Since non ensures $a_n > m_1$ an diverges to ta, $lim_{n \to \infty} a_n = +\infty$. Thus $\lim_{n\to\infty} a_n = +\infty = \sup(A)$. \mathbb{Z}