Lecture 9 © Katy Craig, 2023 <u>Thm</u>: Given a sequence sn, limsnexists (=> limingsn=limsupsn. Furthermore, if either of these equivalent conditions holds, now on = liming on = linsup now on = insup. (Kemarks: DIf s<M ∀s∈S, then sup(s)≤M. (2) $b_N = inf(s_n; n^2N_3) \leq sup(s_n; n^2N_3) = a_N$ 3 If rn and the are sequences whose limits exist and rn the the VnEN, then limorn < limoth. hand Sn= lim DN = lims an = limsup Sn (4) limsup (-Sn) = 11m SUP &-Sn: n>N} $= \lim_{N \to \infty} -in \int_{S} Sn \cdot n > N \int_{S}$ = $-\lim_{N \to \infty} in \int_{S} Sn \cdot n > N \int_{S}$ = $-\lim_{N \to \infty} Sn \cdot n > N \int_{S}$ Similarly, liming -sn = - limsup sn.

CASEI Suppose limsn=-a), so for all M<O, there exists No s.t. n^2N_{0} , sn < M. Thus $a_{N_0} = sup \{sn : n^2N_0\} \leq M$. Since a_N is a decreasing sequence, $a_N \leq a_{N_0} \leq M \forall N \ge N_0$. Since M<O was arbitrary, by the definition of divergence to $-\infty$, we have $N \ge \infty$ as $= -\infty$. Thus inder to $-\infty$, we have $N \ge \infty$ as $= -\infty$.

CASEZ Suppose limsn=too. Then how -Sn=-or. By previous case, liming -Sn = limsup -Sn = lim -Sn=-or. Thus, -limsup Sn = - liming Sn = - lim of Sn = -or. Multiplying by -1, limsup Sn = liming sn = - limson Sn = +or.

CASE 3 (Suppose limsn=s, for seR) Fix E>O. By defn of convergence, Z No s.t. n>No implies Isn-sl<E (=) s-E < sn < s+E. Hence ANO = SUP ESN: n>No] = s+E, and since an is decreasing, N>NO ensures an = ano = s+E. Likewise, bno = infEsn: n>No] = s-E, and since bn is increasing, N>NO ensures bn = bno = s-E. Thus, N>No ensures S-E = DN = an = StE. Since E>O was arbitrary, lim noo bn = lim ap = S, that is limsup sn = liming sn = S.

Consider a sequence sn and sER CLAIM: If $\forall \epsilon > 0$, $\exists N \epsilon R$ so that n > N ensures $lsn - sl = \epsilon$, then sn converges to s.

Pl: Fix E>O. Then $\frac{e}{2}$ >O. B. hypothesis, $\exists N \in \mathbb{R} \ s.t. \ n > N \ ensure > O/sud - s1 \leq \frac{e}{2} < \epsilon.$ Thus sn converges to s.

Now suppose liminfsn=limsupsn WTS limsn exists
and limsn=liminfsn=limsupsn.
CASET Suppose liminfsn=limsupsn=-...
CASET Suppose liminfsn=limsupsn=-...
By defn of limsup,

$$\lim_{n \to \infty} a_N = -\infty$$
. Fix M<0. There exists No s.t.
N>No, SupesninNI=a_N < M. Let
NI= [No]+1 = min & melN: m2No]+1, so
Supesnin>NJ = a_N < M. Thus sn
 $\lim_{n \to \infty} s_n = -\infty$.
 $[asser][liminfsn=limsupsn=+\infty]$ Then
 $\lim_{n \to \infty} s_n = -\infty$. By what we just
showed, $\lim_{n \to \infty} s_n = -\infty$. By what we just
showed, $\lim_{n \to \infty} s_n = -\infty$, so $\lim_{n \to \infty} s_n = +\infty$.
 $[asser][liminfsn=limsupsn=sforseR]$ Thus
 $\lim_{n \to \infty} a_N = \lim_{n \to \infty} b_N = S$. Fix $\varepsilon > 0$. There exists Na
and Nb so that N>Na ensures [an-ske
and Nb so that N>Na ensures [an-ske
and N> ensures [b_N-s]< ε . Define
No = max ξNo , Nb3+1. Then
 $b_{No} = S - \varepsilon$ and $a_{No} < s+ \varepsilon$. Therefore
for all n>No,

 $S - \varepsilon < b_{No} = inf \varepsilon n^2 No \widetilde{f} \leq sn \leq sup \varepsilon n^2 n^2 No \widetilde{f} \leq a_{No} < S + \varepsilon$.

Since E>O was corbitrary, him sn=S. D