Midtern 1 Solutions @Katy Craig, 2024

S is bounded above if $\exists M \in \mathbb{R}$ so that s < M for all $s \in S$

b, By defn of A+B and the supremum, sup(A+B) is an upper bound for A+B, so a+b=sup(A+B) (=>a=sup(A+B)-b for all a EA, bEB. Thus, for all bEB, sup(A+B) -b is an upper bound for Å By defn of sup(A) as the least upper bound for A, sup(A) = sup(A+B)-b for all bEB. Thus $b \leq Sup(A+B) - Sup(A)$ for all bEB

This shows sup(A+B)-sup(A) is an upper bound for B, hence sup(B) < sup(A+B) sup(A+B) sup(A).

This shows $Sup(A) + Sup(B) \leq Sup(A+B).$

To see the other inequality, note that, since sup(A) = a & a & a & a & sup(B) = b & b & B, sup(A) + sup(B) = a + b & & a & A, b & B.

Thus Sup(A) + Sup(B) is an upper bound for A + B, hence $Sup(A) + sup(B) \ge sup(A + B)$.

2b)

A sequence s_n diverges to $+\infty$ if, for all M > 0, there exists N so that n > N ensures $s_n > M$.

2d) $t_n = (-1)^n$

3) See practice midterm Q3

- 4) (1) Note that S = (1/2, 1](i) yes, sup(S) = 1 (ii) no, inf(S) = 1/2
- (2) (i) (b) (ii) (c)