MATH 117: MIDTERM 1B

Thursday, February 8th, 2024

Name: _____

Student ID #: _____

Signature: _____

This is a closed-book and closed-note examination. Calculators are not allowed. Please show your work in the space provided. I will provide scratch paper—other forms of scratch paper are not permitted. If you continue a problem on the back of a page, please write "continued on back". Partial credit will be given for partial answers. You have 1 hour and 15 minutes.

Question	Points	Score
3	32	
4	16	
Total	48	

Question 3 (32 points)

Consider a nonempty set $A \subseteq \mathbb{R}$.

(a) Suppose A is bounded below. Prove that there exists a sequence a_n , satisfying

$$\{a_n : n \in \mathbb{N}\} \subseteq A$$

and

$$\inf A \le a_n \le \inf A + \frac{1}{n} \text{ for all } n \in \mathbb{N}.$$

- (b) Prove that the sequence you found in part (a) satisfies $\lim_{n\to\infty} a_n = \inf A$.
- (c) Now suppose A is not bounded below. Prove that there exists a sequence a_n satisfying

$$\{a_n : n \in \mathbb{N}\} \subseteq A$$

and

$$a_n \leq -n$$
 for all $n \in \mathbb{N}$.

(d) Prove that the sequence you found in part (c) satisfies $\lim_{n \to +\infty} a_n = \inf A$

Lightning Round!

You do not need to show your work or justify your answers.

- (1) Consider the set $S = \bigcup_{n=2}^{\infty} \left(\frac{1}{2}, 1\right]$.
 - (i) Does the set have a maximum? What is $\sup(S)$?
 - (ii) Does the set have a minimum? What is $\inf(S)$?
- (2) Circle the correct answer:
 - (i) Which example fails the criteria for the theorem that the limit of a quotient is the quotient of the limits?
 - (a) $(1+\frac{1}{n})/(2-\frac{1}{n})$
 - (b) $(1 + (1/2)^n)/(1/n)$
 - (c) $(1/n) \cdot \sin(n\pi)/(1+e^{-n})$
 - (d) $(n^{1/n})/(1+3/n)$
 - (e) $2^{-n}/(1+2^{-n})$
 - (ii) Suppose $\lim_{n\to+\infty} s_n = -\infty$. What property must s_n satisfy?
 - (a) bounded
 - (b) monotone
 - (c) unbounded
 - (d) decreasing
 - (e) limit does not exist