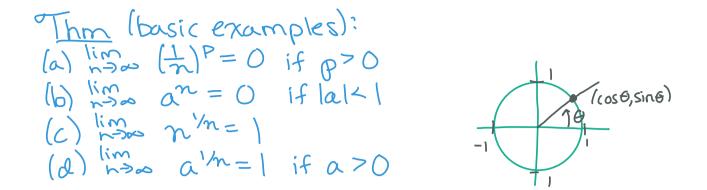
Midterm 2 Review

<u>Wel</u>(supremum/infimum): Consider an ordered field F. • If S=F is bounded above and there exists MoeF Satisfying. [(a) Mo is an upper bound of S (b) if M is an upper bound of S, then $M_0 \leq M$ we say Mo is the <u>supremum</u> of S and write Mo=sup(s). T" Mo is the least upper bound" · If S=F is bounded below and there exists moe F Satisfying ... (a) mo is a lower bound of S (b) if m is a lower bound of S, _ then mo≥m we say no is the infimum of S and write mo=inf(S). "" mo is the greatest bluer bound"

Thm Consider an ordered field F and $S \leq F$. (i) If max(s) exists, then sup(s) = max(s). (ii) If min(s) exists, then ing(s) = min(s).

- •The number s is the <u>limit</u> of sn, and we write noosn=s or sn >s.
- A sequence that does not converge to any s€tR it is said to diverge
- <u>Thm</u>(limit of sum 1s sum af limits): If sn and th are convergent sequences, now (sn thn) = 1 mos sn this th.
- Thm (limit of product is product of limits): If sn and tn are convergent sequences, non sn tn = (lim sn)(lim

 $\frac{\text{Thm}(\text{limit of quotient is quotient of limits}): If should the are convergent sequences, <math>sn \neq 0$ for all n, and $\lim_{n \to \infty} sn \neq 0$, then $\lim_{n \to \infty} \left(\frac{tn}{sn}\right) = \frac{\lim_{n \to \infty} tn}{\lim_{n \to \infty} sn}$.



Def (diverges to + 20 or - 20): A sequence sn diverges to + 20 if for all M>0 there exists NER so that n>N ensures Sn>M. Wewrite in son=+00.

Likewise, a sequence son diverges to ->>> if for all M<O there exists N so that n>N ensures sn<M. We write no sn=-00.

Del: (increasing/decreasing/monotone) A sequence Sn is increasing if Sn = Sn+1 Mn. A sequence Sn is decreasing (if Sn = Sn+1 Mn. A sequence Sn is monotone if it is either increasing or decreasing

<u>Thm</u>: All bounded monotone sequences converge

•

Thm: Every sequence so has a monotonic subsequence.

« MAJOR THEOREM 5 Thm (Bolzono-Weierstrass): Every bounded sequence has a convergent subsequence.

<u>Thm</u>: Let S denote the set of subsequential limits of sn. Then limsup sn= max(S) and limintsn=min(S)

Leslie's Thm: Suppose $\lim_{n\to\infty} sn exists.$ For any subsequence sn_{k} , $\lim_{k\to\infty} sn_{k} = \lim_{n\to\infty} sn.$ $Pf: If \lim_{n\to\infty} sn = s$ for $s \in R$. This is a consequence of (A). On the other hand suppose $\lim_{n\to\infty} s_n = +\infty$. Fix a subsequence sn_{k} . We will show $\lim_{k\to\infty} sn_{k} = +\infty$. Fix M > 0 arbitrary. There exists N s.t. n > Nensures sn > M. Recall that $n_{k} \ge k$. Thus, if k > N, $n_{k} > N$ and $sn_{k} > M$. This shows $\lim_{k\to\infty} sn_{k} = +\infty$. (Similar for divergence to $-\infty$.) $k > \infty$