Midterm 2 Review

Bel (maximum, minimum) Suppose
$$
S \subseteq F
$$
, where F is an ordered field.

\n\n- If there exists $S_s \in S$ satisfying $S_s \geq S$ for all $s \in S$, then S_s is the linear combination of S and write $S_s = \max(S)$.
\n- It is a large than the set.
\n- If there exists $s_s \in S$ satisfying $S_s \leq S$ for all $s \in S$, then S_s is the final minimum of S and write $S_s = \min(S)$.
\n- It is a similar to the smallest element in the set.
\n

Def boundedabove below Suppose SEF for an ordered field ^F If there exists MEF SEM satisfying SES then ^S is bounded above and M is an upperbound of ^s If there exists MEF ^s satisfying ^m seS then ^S is bounded below and ^m is ^a Lowerbo ofs If S is bounded above and bounded below then S is bounded

Def supremum infinum Consider an ordered field F If SEF is bounded above and there exists MoEF Satisfying... a) Mo is an upper bound of S
a) Mo is an upper bound of b) if M is an upper bound $\bigcup_{o \in \mathbb{N}}$ s then $M_0 \leq M_1$ we say Mo is the supremum of and write $M_o = Sup(S)$ Mo is the least upper bound If SEF is bounded below and there exists moef Satisfuing... α) mo is a lower bound of S
a) mo is a lower bound S b) if m is a lower bound $log S$
then $m_0 \ge m$ - then $m_0 \ge m$ we say mo is the infimum of S
and write mo= inf(s). and write $m_0 = i \sqrt{2}$
 $\frac{m_0}{m_0}$ is the areatest blues Mo is the greatest biler bound

 T_{min} Consider an ordered field F and $S \subseteq F$
i) $T f$ max(s) exists then $\sup(S) = \max(S)$ i) It maxis) exists, then $sup(S) = max(S)$ $\lim_{t\to 0} \mathcal{I}f$ min(s) exists, then $\inf_{s\in S} S(s) = min(S)$

Def real numbers The set of real numbers is the ordered field containing IQ with the property that every nonempty subset SER that is bounded above has ^a supremum MAJOR RESULT 1 Tem Archimedean Property If ^a belR satisfy ^a ⁰ and boo then there exists NEIN so that g bathtub MAJOR THEOREM 2 THE ^Q is dense in ^R If ^a beR with acb there exists rEQ satisfying ^a crab Def Unbounded above below Suppose SER is nonempty If ^S is not bounded above write sup ⁵ to If ^S is not bounded below write infls ^a

Self (convergence):			
A. sequence	Sh. of real numbers (converges)	to	
Some	S \in R	provided	that
For all $\epsilon > 0$, then exists $N \in \mathbb{R}$ so that			
$n > N$ ensures $ S_{n} - S < \epsilon$.			

- The number s is the <u>limit</u> of sn , and we write $n = s$ or $S_n = S$
- A sequence that does not converge to any $S^{\epsilon}R$ it is said to diverge.
- $\frac{7 \text{1mm}}{100}$ limit of sum is sum af limits): T_f Sn and tn are convergent seguences, nous (snttn) = 192 sn + 193 atm
- T_{thm} limit of product is product af limits T_{thm} sn and tn are convergent sequences, "n"s sntn^{= pion}s snlntsatn)

 T_{lim} llimit of quotient is quotient of limits): $\pm t$ sn and the convencion of $\pm t$ for all n are convengent sequences, $Sn \neq 0$ for all n and $n\rightarrow \infty$ sn $\neq 0$, then $\frac{1}{100}$ $\left(\frac{1}{5n}\right)$ = $\frac{n52 \cdot 10}{100}$

Itel (diverges to to or -a): A sequence sn diverges to to if for all Mso there exists NEIR so that n M ensures Sn M. Wewrite $lim_{n\rightarrow\infty}$ sn = too.

Likewise, a sequence sn diverges to - a if for rll MISO there exists N so that n>N ensures $sn < M$. We write $\frac{lm}{n^3}$ sn = - ∞ .

Elel lincreasing/decreasing/monotone)
A sequence sndis increasing if sn=snti tr segnence sn is decreasing (if Aseguence Sn Is decreasing (if Sn ? Sn+1 Vn
Aseguence Sn is monotomed if it is Aseguence Sn is monotone if it is either increasing on decreasing

Ihm: All bounded monotone sequences co.nu g

Thm: If sn is an unbounded, increasing sequence, then
$$
\lim_{n \to \infty} s_n = +\infty
$$
. If sn is an unbounded, decreasing sequence, then $\lim_{n \to \infty} s_{n-1}$ and $\lim_{n \to \infty} s_{n-2}$ is an unbounded, decreasing sequence, then $\lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n-1} = \lim_{n \to \infty} s_n$

Cauchy sequence if for all 830 , there exists NER s.t. m,n N ensures lsn⁻sml²E

\n**MA3OR THEOREM** #4
\n**Thm:** A sequence is converted if it is Cauchy.
\n**Def**:Subsequence in is any read number or
\n**symbol** + no or -oo that if the limit of a sequence in it is done
\nsome subsequence of sn.
\n**Thm:** If a sequence *sn* converges to a limit *s*,
\n**Then** every subsequence of nonverges to a limit *s*,
\n**Thm:** If a sequence *sn* converges to a limit *s*,
\n**Thm:** (main subsequence theorem)
\nLet sn be a sequence of need numbers.
\n(a) let
$$
t \in \mathbb{R}
$$

\nThe set $\{n : |sn-t| \leq \epsilon\}$ is infinite for all $\epsilon > 0$
\nif and only if
\nIt is a subsequence $\Leftrightarrow +\infty$ is a subseq. limit.
\n(b) sn is unbounded above $\Leftrightarrow +\infty$ is a subseq. limit.
\n(c) sn is unbounded below $\Leftrightarrow -\infty$ is a subseq. limit.\n

Thm: Every sequence sn has a monotonic subsequence.

MAJOR THEOREM 5 Thm (Bolgano Weierstrass): Every bounded sequence has ^a convergent subsequence

 $\frac{1}{10}$ The S denote the set of subsequential limits
of sm Then liness so = near (S) and liminfsm = min of sn. Then limsupsn max(S) and limintsn = min

Leslie's Thm: Suppose lim sn exists. For any subsequence S_{n_k} , $\lim_{k\to\infty} S_{n_k} = \lim_{n\to\infty} S_n$ $Pf: IF \lim_{n\to\infty} Sn = S$ for SeR . This is a $\frac{c}{\sqrt{2}}$ of $(*$. On the other hand suppose $\lim_{n\to\infty} s_n^0$ = too. Fix a subsequence s_{n_k} . We will show $\lim_{k \to \infty} s_{n_k}$ =too. Fix $M > 0$ arbitrary. There exists N s.t. $n > N$ ensures $s_n > m$. Ufecall that $n_k \ge k$. Thus, $if k > N$, $n_k > N$ and $sn_k > M$. This shows $\lim_{k\to\infty}$ Sn_k = + ∞ . (Similar for divergence to $-\infty$