<u>Practice Midterm 2 Solutions</u> Katy Craig, 2024 $\left(\right)$ First, we show $\frac{1001}{n}$ Sn is an upper bound for A Fix a EA. Then \exists Na s.t. n = Na ensure $SnZQ.$ Thus, for $N>Nb$, bring $2sn:n > N/2a$. By the contrapositive of $HW+0.6\omega$, this gives $W = \lim_{n \to \infty} \frac{1}{n} \int_{0}^{\infty} \frac{1}{n} \sin \omega t \leq 5 \sin \omega t$ a

Our argument above shows that $\liminf_{n \to \infty} s_n \geq \sup(A)$. Suppose, for the sake of contradiction, that
Sup(A)< $\log A$ $\sup(A)$ \leq $\sup_{n \geq 1}$ sn $\bigcap_{n \geq 1}$ Tere \leq $\sup(A)$ \leq r \leq $\frac{1}{n-2d}$ sn. Sine $r \notin A$, $|\{ne\}|$. Sn \leq is infinite. Thus, $in\{5n:n\nu\}\leq r$ \forall NEIN.

This implies $\lim_{n\to\infty}$ sn \leq r, which is a contradiction.

20 We proceed by induction.
For the base dase, note that
 $s_1=1, s_2=2, s_3=\frac{s}{2}, s_4=\frac{s}{3}$. Suppose $S_{2k} \geq S_{2k+1}$ and $S_{2k-1} \leq S_{2k+1}$. Then $S_{2(k+2)} = 1 + \frac{1}{S_{2k+1}} = 1 + \frac{1}{S_{2k-1}} = S_{2k}$
 $S_{0} S_{2k+3} = 1 + \frac{1}{S_{2(k+2)}} \geq 1 + \frac{1}{S_{2k}} = S_{2k+1}$

B) Since San is decreasing and $s_2=2$, We have $52n \leq 2 \forall 9d$. Since $52n-1$ is increasing and $s_1 = 1$, we have $\zeta_{2n-1} \geq 1$ $\forall n.$ Furthermore, $S_{2n} = 1 + \frac{1}{s_{2n-1}} \frac{s_{2n-1} s_2}{2}$ $\forall n$ and $S_{2n+1} = 1 + \frac{1}{s_{2n}} s_{2n}^{2}$
 $S_{2n+1} = 1 + \frac{1}{s_{2n}} s_{2n}^{2}$
 $S_{2n+2} = 1 + \frac{1}{s_{2n}} s_{2n}^{2}$ $C)$ Since $P \leq s_m \leq 2$ for all n_1 the subsequence of even terms and the subsequance of odd terms
are both bounded and monotone. Hene, they both converge. Let
lim $s_{2k} = s_{even}$ and $\lim_{k \to \infty} s_{2k-1} = s_{odd}$.

Note that:
\n
$$
S_{2k1} = 1 + \frac{1}{S_{2k}} = 1 + \frac{1}{1 + \frac{1}{S_{2k-1}}}.
$$

\nSince $S_{2k-1} \ge 1$, $S_{odd} \ge 1$. Thus, applying the limit theorem
\n $1 + \frac{1}{S_{2k-1}}$ and $S_{2k+1} = 1 + \frac{1}{1 + \frac{1}{S_{odd}}}$.

Thus, Soda Solves
$$
(Soda-1) = (1 + \frac{1}{Soda})^{-1}
$$

\n $\geq \frac{1}{2}$ $(Soda-1)(1 + \frac{1}{Soda}) = 1 \geq 5$ $Sada+1-1+\frac{1}{Sade}=1$
\n $\leq \Rightarrow Soda = Soda - 1 = 0$. By the quadratic formula and the fact that $Sada \in [1,2]$,
\nwe obtain $Soda = P$.

Finally,

\n
$$
S_{2k} \triangleq 1 + \frac{1}{S_{2k-1}}
$$
\nAgain, applying the limit theorems, $log\frac{1}{s}$ is given by $S_{2k-1} = 1 + \frac{1}{s}$ and $S_{2k-1} = 0$.

Fix ^E ⁰ Choose Neven so K Neven $ensuce$ $|s_{2k} - \varphi| < \epsilon$ and Nodd so k > Noda ensures $1s_{2k-1}$ - $9k$ 5 . Let $N = 2$ max SNeven North? Then

n > N ensures that either n=2k and K>Neven or n = 2k-1 and k>Nodd. In either case $|s_n - \varphi| < \epsilon$.

a) $\limsup_{n\to+\infty} s_n = \lim_{N\to+\infty} \sup\{s_n : n > N\}$

b) Suppose $\limsup_{n\to+\infty} |s_n|=0$. Since $|s_n|\geq 0$, $\liminf_{n\to+\infty} |s_n|=0$. Thus $\lim_{n\to+\infty}|s_n|=0$ and $\lim_{n\to+\infty}-|s_n|=0$. Since $-|s_n|\leq s_n\leq |s_n|$, the squeeze lemma ensures $\lim_{n\to+\infty} s_n = 0$.

c) Suppose $\lim_{n\to+\infty} s_n = 0$. As shown on Midterm 1, $\lim_{n\to+\infty} |s_n| = |\lim_{n\to+\infty} s_n|$ $|0| = 0$. Thus $\limsup_{n \to +\infty} |s_n| = 0$.

 $4)$ 1. (a) (b) $2.$ (i) True (ii) False - consider $s_n = (-1)^n n$

$$
\begin{array}{c}\n\textcircled{4} \\
\textcircled{5} \\
\textcircled{6} \\
\textcircled{7} \\
\textcircled{8} \\
\textcircled{7} \\
\textcircled{9} \\
\textcircled{7} \\
\textcircled{1} \\
\textcircled{9} \\
\textcircled{7} \\
\textcircled{1} \\
\textcircled{2} \\
\textcircled{3} \\
\textcircled{7} \\
\textcircled{1} \\
\textcircled{1} \\
\textcircled{2} \\
\textcircled{3} \\
\textcircled{7} \\
$$

$$
\liminf_{n\to\infty}a_n=1
$$