Practice Final Solutions KatyCraig ²⁰²⁴ Define ^a sequence sn as follows since M is the least upper bound for \hat{z} \pm (x) : x \in S , \forall n \in M , \exists x n \in S .
 \exists t . m \neq $f(x_{n})$ \in m . \exists \forall n by the Squeeze Lemma, $\lim_{n\to\infty} f(x_n) = m$. Since Xnes and S is bounded x_{n} is a bounded sequence. By $Bolz$ ano Weierstrass, 0 it has a 0 convergent subsequence Xnk.
Since P(Xnk) is a subsequence of $f(x_n)$, $\lim_{k\to\infty} f(x_{n_k}) = m$. There, the result halds with the Xn.

2)

E Fix a₁b^E R^V By clensity of lin R, J

re Q s.t. a < r < $\frac{b}{\sqrt{5}}$ Thus, a<Jsr<b. Since Jsres, this Shows the result.

6) Fix xeR. By part @, VneM, Isnes
st. x<snlxx+t. Then $\lim_{n \to \infty}$ Sn=x,

by the Squeeze Lemma. Since f is
continuous, $\sum_{n=1}^{k} f(s_n) = f(x)$.
Finally, since $f(s_n) = n \quad \forall n \in \mathbb{N}$,
we see that $f(x) = n$.

 O Let $h(x) = f(x) - a(x) + \pi$. Since fand g are continuous and constant functions are continuous, using that the sum and product of
Continuous functions is continuous,
We have ts, since product of gand-1 $h(x) = f(x) + \overbrace{(-a(x))}^{+ (x) + \pi} + \pi$

is continuous.

Furthermore, by definition, h(s) = TT
for all se S. By part @, we see
h(x) = Tr for all x e/R. This shows $f(x)-q(x)=0$ $\forall x\in\mathbb{R}$, $\neq h\omega$ $f(x)=q(x)$ for $relx \in \mathbb{R}$.

False Suppose Xn⁼yn
Than lim a = lim un = $1, 1, 1$ Then $lim_{n\rightarrow\infty} \chi_n = \lim_{n\rightarrow\infty} \chi_n = 1$, so $\lim_{n\to\infty} \chi_n = \lim_{n\to\infty} \log n$, but $\chi_n = \log n$ for all $n \in \mathbb{N}$ True Assume, for the sake of contradiction that there exist infinitely maky n so that
In = un Then, for any NE/NJ there $xnzyn$ Then, for χ NEIN there exists $k > N$ so that χ_{k} \gg y_{k} . Thus, \forall NE/N $\frac{\sup \{ \chi_n : n \geq N \}}{a_N} \geq \chi_k \geq \underbrace{ \chi_k \geq \frac{ \text{in} \{ \}}{ \bigcup \{ \chi_n : n \geq N \} } }_{\text{av}}.$ Since the limits of a_n and b_n exist, this shows
 $\lim_{n\to\infty} \chi_n = \lim_{n\to\infty} \chi_n = \lim_{n\to\infty} \chi_n = \lim_{n\to\infty} \chi$ $\lim_{n\to\infty} x_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$

6 Define $h(x)=f(x)-g(x)$. Since f and g are continuous and the constant
function $P(x) = -1$ is continuous, $h(x) = f(x) + (-q(x))$ sum is continuous So h(x) is continuous. Then $h(a) \ge 0$ = $h(b)$, so by the IVT,
I χ_0 ϵ [a₁b] s.t. $h(x_c) = 0$. Thus $f(x_0)=g(x_0)$, which gives the result. 6) Define a/x⁾⁼x. This function is
continuous since $\forall x_{0}$ er, $x_{n} \rightarrow x_{0}$ $lim_{n\to\infty} \rho(x_n) = lim_{n\to\infty} x_n = x_6 = g(x_6)$. Since $f(0) = g(0)$ and $f(1) = g(1)$
by part (a),
 $f(x_0) = g(x_0) = x_0$.

5)

- (1) (a) False, consider the constant function $f(x) = 1.5$.
	- (b) False, consider $f(x) = x$. Then the infimum is zero, but there is no x_0 in (0,1) for which $f(x_0) = 0$.
- (2) (i) (d)
	- (ii) (e)
	- (iii) (e)
	- (iv) (b)