Recall:

Measure Terminology (X, \mathcal{M}, μ)

- μ is a **finite measure** if $\mu(X) < +\infty$.

- μ is a **σ-finite measure** if $\exists \{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$ s.t. $\bigcup_{i=1}^{\infty} E_i = X$ and $\mu(E_i) < +\infty$.

- E is a null set (of μ) if $E \in \mathcal{M}$ and $\mu(E) = 0$.

- We say that a property holds for (μ)-almost every $x \in X$ if the set of points where it doesn’t hold is a null set.

- μ is a **Borel measure** if it is a measure on \mathcal{B}_X, for top space (X, T).
Outer measures

Def: An outer measure on a set X is a function $\mu^*: 2^X \rightarrow [0, +\infty]$ s.t.
1. $\mu^*(\emptyset) = 0$
2. $A \subseteq B \Rightarrow \mu^*(A) \leq \mu^*(B)$
3. $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$

not rec. disj

Ex: (Lebesgue outer measure)
Define $\mu: 2^\mathbb{R} \rightarrow [0, +\infty]$ by

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} |b_i - a_i| : A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \right\}$$

- $\mu^*([a, b]) = b - a$
- μ^* is translation invariant
- We will prove μ^* is an outer measure.
We will be able to show that it becomes countably additive when restricted to “nice enough”.

Which sets are “nice enough”? (Hopefully Borel sets!)

Let X be a nonempty set and μ^* an outer measure.

Def: $A \subseteq X$ is μ^*-measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c) \quad \forall E \subseteq X$$

Let $\mathcal{M}_{\mu^*} = \{A \subseteq X : A \text{ is } \mu^*-\text{measurable}\}$.

“A breaks apart any set E nicely.”
Prop: If $\mu^*(B) = 0$, then $B \in \mathcal{M}^\mu$.

Thm (Carathéodory): Given an outer measure μ^* on X,

(i) \mathcal{M}^μ is a σ-algebra

(ii) μ^* is a measure on \mathcal{M}^μ

Prop: \mathcal{M}^μ is an algebra and μ^* is finitely additive on \mathcal{M}^μ.

Pf of Prop:

Last time: \mathcal{M}^μ is an algebra.

Next: we will show something stronger than μ^*/\mathcal{M}^μ is finitely additive.
Claim 1: Given \(\{B_i\}_{i=1}^n \subseteq \mathcal{M} \mu^* \) disjoint, for all \(E \subseteq X \),

\[
\mu^*(E \cap (\bigcup_{i=1}^n B_i)) = \sum_{i=1}^n \mu^*(E \cap B_i).
\]

Then, taking \(E = X \) gives \(\mu^* \) finitely additive.

Proof of Claim 1:

Base case: \(n = 1 \)

Inductive step: Assume equality holds for \(n-1 \).

\[
\mu^*(E \cap (\bigcup_{i=1}^n B_i)) \downarrow \text{since } B_n \in \mathcal{M} \mu^*
\]

\[
= \mu^*(E \cap (\bigcup_{i=1}^{n-1} B_i) \cap B_n) + \mu^*(E \cap (\bigcup_{i=1}^{n-1} B_i) \cap (\bigcup_{i=1}^n B_i) \cap B_n)
\]

+ \mu^*(E \cap (\bigcup_{i=1}^n B_i) \cap B_n^c)
We will actually prove something stronger...

Claim 2: Given $\exists B_{i=1}^{\infty} \subseteq \mathcal{M} \mu^*$ disjoint for all $E \subseteq \mathcal{X}$

$$
\mu^*(E) = \sum_{i=1}^{\infty} \mu^*(ENB_i) + \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i))
$$
In particular, for \(E = \bigcup_{i=1}^{\infty} B_i \), this implies countable additivity.

Proof of Claim 2:

"\(\leq \)" follows by countable subadditivity, since
\[
E = (\bigcup_{i=1}^{\infty} (\bigcap_{j=i}^{\infty} B_j)) \cup (\bigcap_{i=1}^{\infty} (\bigcup_{j=i}^{\infty} B_j)^c)
\]

It remains to show "\(\geq \)".

Since \(\mu^* \) is closed under finite unions, \(\bigcup_{i=1}^{n} B_i \in \Sigma_{\mu^*} \), so by defn of \(\mu^* \)-meas.
\[\mu^*(E) = \mu^*(E \cap \bigcup_{i=1}^{\infty} B_i) + \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i)^c) \]

Taking \(n \to +\infty \) gives Claim \(\theta \).

\(\mu^* \) is closed under countable unions.

It suffices to show it is closed under countable disjoint unions. Given \(\{B_i\}_{i=1}^{\infty} \subseteq \mathcal{M} \) disjoint. By Claim \(\theta \), \(\forall E \subseteq X \)

\[\mu^*(E) = \sum_{i=1}^{\infty} \mu^*(E \cap B_i) + \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i)^c) \geq \mu^*(\bigcup_{i=1}^{\infty} (E \cap B_i)) + \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i)^c) = \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i)) + \mu^*(E \cap (\bigcup_{i=1}^{\infty} B_i)^c) \]
Thus $i = 1, B_i \in \mathcal{M}_{\mu^*}$.

Back to Lebesgue outer measure

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} |b_i - a_i| : A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \right\}$$

We will study a generalization of this that gives rise to Lebesgue-Stieltjes measures.

Recall: $F: \mathbb{R} \rightarrow [0, \infty]$ is right-continuous if, for all $x \in \mathbb{R}$,

$$\lim_{y \to x^+} F(y) = F(x)$$

\[\lim_{\uparrow} \] \[\lim_{\uparrow} \]
Def: Given $F: \mathbb{R} \to \mathbb{R}$ non-decreasing and right continuous, define $\mu^*_F: \mathcal{B} \to [0, +\infty]$ \[\mu^*_F(A) = \inf \left\{ \sum_{i=1}^{\infty} I_i : A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i] \right\} \]

Why do we require F non-decreasing and right cts?

Spoiler: We will show that any finite measure μ on \mathcal{B} satisfies $\mu = \mu^*_F |_{\mathcal{B}}$ for

$$F(x) = \mu((\infty, x])$$

F is the cumulative distribution function of μ.
Note that if μ is a finite measure on \mathbb{R} and $F(x)$ is its CDF,

- $F(x)$ is nondecreasing:
 \[x \leq y \Rightarrow (-\infty, x] \subseteq (-\infty, y] \Rightarrow F(x) \leq F(y) \]

- $F(x)$ is right continuous:
 For any sequence $x_n \downarrow x$,
 \[
 \lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \mu((-\infty, x_n])
 \]

From above,
\[
\mu \text{ finite measure}
\]
\[
= \mu((-\infty, x])
\]
\[= F(x) \]
Thm: μ^*_F is an outer measure.

Proof:
$\mu^*_F(\emptyset) = 0$ since $\emptyset \subseteq (0,0)$, by defn of μ^*_F,
\[0 \leq \mu^*_F(\emptyset) \leq F(0) - F(0) = 0. \]

Now we show $A \subseteq \bigcup_{j=1}^{\infty} B_j \Rightarrow \mu^*_F(A) \leq \sum_{j=1}^{\infty} \mu^*_F(B_j)$

WLOG $\mu^*_F(B_j) < \infty \quad \forall j$.
By defn of \(\inf \), \(\forall \varepsilon > 0, j = 1, \ldots \)
\[\exists \{ \mathbb{I}^{j, i}_{i=1} \}_{i=1}^\infty s.t. \]
- \(B_j \subseteq \bigcup_{i=1}^\infty \mathbb{I}^{j, i} \)
- \(m^*_F(B_j) \leq \sum_{i=1}^\infty |\mathbb{I}^{j, i}|_F = m^*_F(B_j) + \frac{\varepsilon}{2^j} \)

Since \(A \subseteq \bigcup_{j=1}^\infty B_j \), \(A \subseteq \bigcup_{i=1}^\infty \bigcup_{j=1}^\infty \mathbb{I}^{j, i} \). So
\[m^*_F(A) \leq \sum_{i=1}^\infty |\mathbb{I}^{j, i}|_F \leq \sum_{i=1}^\infty m^*_F(B_j) + \frac{\varepsilon}{2^j} \]
\[= \sum_{j=1}^\infty m^*_F(B_j) + \varepsilon \]

Sending \(\varepsilon \to 0 \) gives the result. \(\square \)
Thm: For all \(a, b \in \mathbb{R}, a \leq b, \)
\[m^* F((a, b]) = F(b) - F(a). \]

Of: "\(\leq \)" follows quickly, since \((a, b] \subseteq (a, b] \cup (\mathbb{Z} \cup ...), \) so by defn \(m^* F((a, b]) \leq F(b) - F(a) + 0 + 0 + ... \)
Reverse inequality next time : (