
Math 201a: Homework 1
Due Friday, October 4th

Questions followed by * are to be turned in. Questions without * are extra practice. At least
one extra practice questions will appear on each exam. You are encouraged to use the results of
previous homework problems to solve subsequent homework problems.

We begin by recalling the following facts:

(i) Recall that, on a topological space X, a sequence {xn}n∈N ⊆ X converges to a limit x ∈ X
if, for any open set U containing x, there exists N ∈ N so that xn ∈ U for all n ≥ N .

(ii) Recall that, for any real valued sequence {xn}n∈N

xn converges ⇐⇒ lim sup
n→+∞

xn = lim inf
n→+∞

xn.

Furthermore, if either equivalent condition holds, then x∗ = lim supn→+∞ xn = lim infn→+∞ xn
is the limit of xn.

(iii) For any nonempy subset S ⊆ R, where R = R∪{+∞,−∞}, we say M ∈ R is an upper bound
of S if M ≥ s for all s ∈ S, and we define sup(S) to the the least upper bound of S. If S = ∅,
we define sup(S) = −∞. In an analogous way, we may define the infimum of S. It follows
immediately from the definition that, if −S := {−s : S ∈ S}, then sup(−S) = − inf(S) and
inf(−S) = − sup(S).

Question 1

Given a sequence {xn}n∈N ⊆ R, define

lim sup
n→+∞

xn = inf
k∈N

sup
n≥k

xn and lim inf
n→+∞

xn = sup
k∈N

inf
n≥k

xn.

(a) Prove that lim infn→+∞ xn ≤ lim supn→+∞ xn.

(b) For any sequence {xn}n∈N ⊆ R, prove that

lim sup
n→+∞

(−xn) = − lim inf
n→+∞

xn.

(c) For any sequences {xn}n∈N, {yn}n∈N ∈ R, prove that

lim sup
n→+∞

(xn + yn) ≤ lim sup
n→+∞

xn + lim sup
n→+∞

yn,

as long as none of the sums are of the form ∞−∞. Give an example where strict inequality
holds.

(d) If xn ≤ yn for all n, prove that

lim inf
n→+∞

xn ≤ lim inf
n→+∞

yn.
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Question 2*

First, we recall some basic facts about the extended real numbers R = R∪ {+∞,−∞}. We endow
R with the topology generated by sets of the following form, for a, b ∈ R,

(a, b) := {x ∈ R : a < x < b}, (a,+∞] := {x ∈ R : x > a}, [−∞, b) := {x ∈ R : x < b}, for a, b ∈ R.

In other words, any open set in R can be expressed as a union of sets of the above form.

(a) It is clear from the definition that, for any real valued sequence {xn}n∈N ⊆ R, if xn converges
to some x∗ ∈ R with respect to the usual topology on R, then {xn}n∈N ⊆ R converges with
respect to the topology on R.

Prove that, if {xn}n∈N ⊆ R converges to x∗ ∈ R, then, up to modifying finitely many elements
of the sequence, we have {xn}n∈N ⊆ R and xn converges to x∗ in the usual topology on R.

(b) Prove that a sequence {xn}n∈N ⊆ R converges with respect to the topology on R if and only
if lim infn→+∞ xn = lim supn→+∞ xn. Furthermore, if either equivalent condition holds, then
x∗ = lim infn→+∞ xn = lim supn→+∞ xn = limn→+∞ xn is the limit of xn. (You may use,
without proof, the analogous fact for real valued sequences, as recalled above.)

The terminology “converges with respect to the topology on R” is a bit counterintuitive. (For
example, xn = n would “converge” to +∞.) Consequently, in practice, we will say that xn ∈ R
has a limit or the limit exists whenever it converges with respect to the topology on R, and we
will write limn→+∞ xn for the limiting value.

(c) Prove that ϕ : R → [−1, 1] : x 7→ x/(1 + |x|) is a homeomorphism, when [−1, 1] is endowed
with the usual topology.

As a consequence of part (c), we conclude that R is a compact metric space. Consequently, for
any other metric space (X, d), a function f : X → R is continuous if and only if, for all convergent
sequences xn, limn→+∞ f(xn) = f(limn→+∞ xn).

Question 3*

Given a metric space (X, d), we say that...

• f : X → R is lower semicontinuous in case {x : f(x) > a} is open for all a ∈ R;

• f : X → R is upper semicontinuous in case {x : f(x) < a} is open for all a ∈ R.

(a) Prove that f : X → R is lower semicontinuous if and only if, for all x0 ∈ X and every sequence
xn converging to x0, we have

f(x0) ≤ lim inf
n→+∞

f(xn).

(b) Prove that f : X → R is upper semicontinuous if and only if, for all x0 ∈ X and every sequence
xn converging to x0, we have

f(x0) ≥ lim sup
n→+∞

f(xn).

(c) Prove that f : X → R is continuous if and only if f is both upper and lower semicontinuous.
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Question 4*

We begin by recalling the definition of the Riemann integral from undergraduate analysis. Fix an
interval [a, b], a 6= b. A partition P of [a, b] is a finite set of points x0, x1, . . . xn satisfying

a = x0 < x1 < · · · < xn−1 < xn = b.

Define ∆xi = xi − xi−1. For any bounded, real valued function f : [a, b] → R, we may define the
upper and lower sums with respect to a given partition P :

U(P, f) :=

n∑
i=1

Mi∆xi , Mi = sup
xi−1≤x≤xi

f(x),

L(P, f) :=

n∑
i=1

mi∆xi , mi = inf
xi−1≤x≤xi

f(x).

Finally, the upper and lower Riemann integrals of f over [a, b] are defined by∫ b

a
f(x)dx = inf

P
U(P, f)∫ b

a
f(x)dx = sup

P
L(P, f).

If
∫ b
a f(x)dx =

∫ b
a f(x)dx, then we say f is Riemann integrable on [a, b], and the value of its integral

is given by ∫ b

a
f(x)dx =

∫ b

a
f(x)dx =

∫ b

a
f(x)dx.

Let f : [0, 1]→ R be the function that is 1 for every rational number and 0 for every irrational
number. Prove that f is not Riemann integrable on [0, 1].

Question 5

(a) Let C([0, 1]) denote the space of continuous, real valued functions on the interval [0, 1]. For all
piecewise continuous functions f, g ∈ Cp.w.([0, 1]), define

d∞(f, g) := sup
x∈[0,1]

|f(x)− g(x)|

d1(f, g) :=

∫ 1

0
|f(x)− g(x)|dx,

where the integral is the Riemann integral. Prove that (C([0, 1]), d∞) and (C([0, 1]), d1) are
metric spaces.

(b) Consider the sequence of functions

fn(x) :=


1 if x ∈

[
0, 12
]

1− n(x− 1
2) if x ∈

(
1
2 ,

1
2 + 1

n

)
0 if x ∈

[
1
2 + 1

n , 1
]
.

(1)

Is fn a Cauchy sequence w.r.t. d∞? Is fn a Cauchy sequence w.r.t. d1?
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(c) In undergraduate analysis, you learned that (C([0, 1]), d∞) is complete. Is (C([0, 1]), d1) complete?

Hint: Assume that fn converges to some f ∈ C([0, 1]) and prove that we must have f(x) = 1
for x ≥ 1/2 and f(x) = 0 for x ≤ 1/2.

Question 6*

(a) Define an equivalence relation on R as follows: x ∼ y ⇐⇒ x − y ∈ Q. Prove that every
equivalence class contains elements in the interval [0, 1].

(b) Using the equivalence relation from part (a) and the Axiom of Choice, define a set A by
choosing one element in [0, 1] for each equivalence class. Prove that {A + q}q∈Q∩[−1,1] is a
disjoint collection of sets.

Question 7*

Given a metric space (X, d) and a function f : X → R, define its lower semicontinuous envelope to
be

f∗(x) := lim
ε→0

(inf{f(y) : d(x, y) < ε}) .

(a) Why does the limit ε→ 0 exist for all x ∈ X?

(b) Prove that f∗ is lower semicontinuous.

(c) Prove that f∗(x) ≤ f(x) for all x ∈ X.

(d) Prove that f∗(x) = inf{lim infn→+∞ f(xn) : xn → x} for all x ∈ X.

Question 8

Consider a metric space (X, d).

(a) Prove that the supremum of any collection of lower semicontinuous functions on (X, d) is lower
semicontinuous.

(b) Prove that if g(x) is a lower semicontinuous function satisfying g(x) ≤ f(x) for all x ∈ X, then
g(x) ≤ f∗(x).

(c) Prove that

f∗(x) = sup{g(x) : g : X → R is lower semicontinuous and g(x) ≤ f(x) ∀x ∈ X}.

Question 9*

Consider nonempty sets X,Y , and a function f : X → Y .

(a) Prove that f−1 (∪α∈AEα) = ∪α∈Af−1(Eα), ∀Eα ⊆ Y .

(b) Prove that f−1(Ec) =
(
f−1(E)

)c
, ∀E ⊆ Y .

(c) Which is always true? Which is not always true?

f (∪α∈AEα) = ∪α∈Af(Eα), ∀Eα ⊆ X, or f(Ec) = (f(E))c , ∀E ⊆ X

Justify your answer.
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