MATH 201A: HOMEWORK 2

Due Sunday, October 13th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice questions will appear on each exam.

Question 1

Prove the following:

- (a) Any algebra that is closed under countable disjoint unions is a σ -algebra.
- (b) Any algebra that is closed under countable increasing unions is a σ -algebra. (We say that an algebra \mathcal{A} is closed under countable increasing unions if, for all $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$ with $E_i \subseteq E_{i+1}$ for all $i, \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$.)

Question 2

(a) Prove the following lemma from lecture 2:

LEMMA 1. Suppose A is an algebra of subsets of a set X.

- (i) If $E_1, \ldots, E_n \in \mathcal{A}$, then $\bigcap_{i=1}^n E_i \in \mathcal{A}$.
- (ii) $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$.
- (b) Prove the following claim from lecture 2:

Claim: Given a nonempty collection C of σ -algebras on X,

$$\cap \mathcal{C} := \{ E : E \in \mathcal{A}, \ \forall \mathcal{A} \in \mathcal{C} \}$$

is a σ -algebra.

Question 3

Fix an open set $U \subseteq \mathbb{R}$. Prove that there exist $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ so that $U = \bigcup_{n=1}^{\infty} (a_n, b_n)$.

Question 4*

Prove the following proposition from lecture 2:

PROPOSITION 2. The Borel σ -algebra of \mathbb{R} is generated by each of the following:

- (i) the half-open intervals: $\mathcal{E}_3 = \{(a, b] : a < b\},\$
- (ii) the open rays: $\mathcal{E}_5 = \{(a, +\infty) : a \in \mathbb{R}\},\$
- (iii) the closed rays: $\mathcal{E}_7 = \{[a, +\infty) : a \in \mathbb{R}\}.$

Question 5*

Let X be an uncountable set, and let \mathcal{A} be the collection of subsets $E \subseteq X$ such that either E or E^c is at most countably infinite. Prove that \mathcal{A} is a σ -algebra.

Question 6*

Given a collection of sets $\{E_i\}_{i=1}^{\infty}$, we may define

$$\limsup_{i \to +\infty} E_i := \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_i , \qquad \liminf_{i \to +\infty} E_i := \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} E_i .$$

We may also consider the sets

```
A_1 := \{x : x \in E_i \text{ for all but finitely many } i\}, \qquad A_2 := \{x : x \in E_i \text{ for infinitely many } i\}.
```

Determine for which values of $n, m \in \{1, 2\}$, $\limsup_{i \to +\infty} E_i = A_n$ and $\liminf_{i \to +\infty} E_i = A_m$. Justify your answer with a proof.

Question 7

Each $x \in [0,1]$ has a base-10 decimal expansion $x = \sum_{j=1}^{+\infty} a_j 10^{-j}$, where $a_j = 0, 1, \dots, 9$. This expansion is unique unless x is of the form $p10^{-k}$, for $p, k \in \mathbb{N}$, where p is not divisible by 10. In this case x has two expansions: one with $a_j = 0$ for j > k and one with $a_j = 9$ for j > k. For the purposes of this problem, suppose that we always choose the *standard decimal representation of* x, which is the one for which $a_j = 0$ for j > k.

- (a) Fix $n \in \mathbb{N}$. Let A_n be the set of numbers x in the interval [0,1] with a 7 in the nth decimal place. Prove that A_n belongs to the Borel σ -algebra.
- (b) Let E be the set of numbers x in the interval [0,1] so that the decimal expansion for x contains a 7. Prove that E belongs to the Borel σ -algebra.
- (c) Let F be the set of numbers x in the interval [0,1] so that the decimal expansion for x contains infinitely many 7's. Prove that F belongs to the Borel σ -algebra.

Question 8*

Consider a metric space (X,d) and $f: X \to \overline{\mathbb{R}}$. Recall the notion of lower semicontinuous envelope f_* from Homework 1. Let f^* denote the upper semicontinuous envelope of f, which is defined symmetrically. You may use all the analogous properties of the upper semicontinuous envelope f^* that you proved for the lower semicontinuous envelope f_* on Homework 1.

- (a) Prove that f is continuous at $x \in X$ if and only if $f_*(x) = f^*(x) = f(x)$.
- (b) Let E be the set of points at which f is discontinuous. Prove that E is a countable union of closed sets, hence a Borel set. (*Hint*: What can you say about the set $\{y: f_*(y) \ge f^*(y)\}$?)

Question 9*

Suppose (X, \mathcal{M}, μ) is a measure space with $\mu(X) < +\infty$. Suppose A_1, A_2, \ldots are sets in \mathcal{M} with $\mu(A_i) \geq c > 0$ for all i. Let Z be the set of elements $x \in X$ that belong to infinitely many of the A_i 's. Prove that $\mu(Z) \geq c$.

Question 10

Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$ nonempty, define the restriction of μ to E by $\mu_E(A) := \mu(A \cap E)$ for all $A \in \mathcal{M}$. Prove that μ_E is a measure on \mathcal{M} .

Question 11*

Suppose that X is an uncountable set. Define outer measures μ^* and ν^* on X by

$$\mu^*(E) = \begin{cases} 0 & \text{if } E \text{ is countable,} \\ 1 & \text{if } E \text{ is uncountable,} \end{cases} \qquad \nu^*(E) = \begin{cases} 0 & \text{if } E \text{ is countable,} \\ +\infty & \text{if } E \text{ is uncountable.} \end{cases}$$

- (a) Find all sets that are μ^* measurable. Justify your answer.
- (b) Find all sets that are ν^* measurable. Justify your answer.

Question 12*

By Caratheodory's Theorem, we know that any outer measure μ^* can lead to a measure by restricting μ^* to the collection of μ^* -measurable sets. However, in this problem, we will show that the collection of μ^* -measurable sets is, in general, not the largest σ -algebra on which the restriction of μ^* becomes a measure.

Consider the set $X = \{1, 2, 3\}$. Define an outer measure as follows:

$$\mu^*(A) = \begin{cases} 0 & \text{if } |A| = 0, \\ 1 & \text{if } |A| = 1, 2 \\ 2 & \text{if } |A| = 3. \end{cases}$$

- (a) Prove that μ^* is an outer measure on X.
- (b) Prove that the collection of μ^* measurable sets is $\{\emptyset, X\}$.
- (c) Prove that $\mathcal{A} := \{\emptyset, \{1\}, \{2,3\}, X\}$ is a σ -algebra.
- (d) Prove that $\mu^*|_{\mathcal{A}}$ is a measure.

This shows that the Caratheodory σ -algebra \mathcal{M}_{μ^*} is not, in general, the largest σ -algebra on which μ^* can be restricted to be a measure.