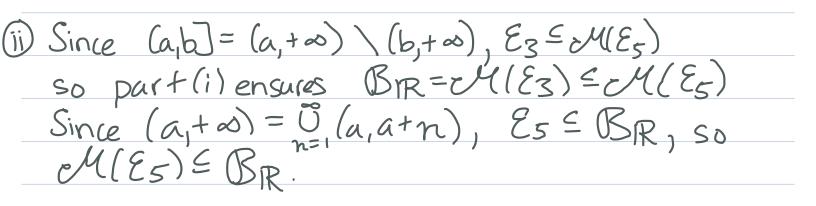
Homework 2 Solutions
Math 201a, F24
© Katy Craig
3) Let an and bn be the sequences of all rational numbers so that $(an,bn) \subseteq \mathcal{U}$. Then $n^2(an,bn) \subseteq \mathcal{U}$.
To see the opposite containment, fix $u \in U$. Since U is open, $\exists \ \varepsilon > 0 \text{ s.t.} (u - \varepsilon, u + \varepsilon) \leq U$. By density of U in IR , there exists an, bu so that $u(\varepsilon)(an, bn) \leq (u - \varepsilon, u + \varepsilon)$. Thus $U = \int_{-\varepsilon}^{\varepsilon} (an, bn)$.
(4) C C C 2
From Q3 Recall that we may express any open set U=1R as U=0 (an,bn) for some Ean En=1, Ebn En=1
(i) Since $(a_1b) = \bigcap_{n=1}^{\infty} (a_1b + \frac{1}{n})$, it is clear that $\mathcal{E}_3 \in \mathbb{B}_{\mathbb{R}}$, so $\mathcal{M}(\mathcal{E}_3) \in \mathbb{B}_{\mathbb{R}}$. OTOH $(a_1b) = \bigcup_{n=1}^{\infty} (a_1b - \frac{1}{n})$, so $(a_1b) \subseteq \mathcal{M}(\mathcal{E}_3)$
and (+) ensured BR = ell(E3).



(iii) Since
$$[a,+\infty) = \bigcap_{n=1}^{\infty} (a-\frac{1}{n},+\infty)$$
, part (ii) ensured $E_7 = \mathcal{M}(\mathcal{E}_8) = \mathcal{B}_{IR}$, so $\mathcal{M}(\mathcal{E}_8) \subseteq \mathcal{B}_{IR}$.

Since
$$(a,+\infty) = U[a+n,+\infty) \subseteq \mathcal{C}(\mathcal{E}_7)$$
, part (ii)

Wext, we show closure under countable
unions. Suppose E1, Ez, & cA.
Consider ni En. If ni En is at most
countably infinite, no. EnezA. On the
countably infinite, not EnezA. On the other hand, suppose not En is not at
most countably infinite. Then there
most countably infinite. Then there exists at least one set Emin the Seguence
that is not countable. By defin of ct,
Em is at most countably infinite.
that is not countable. By definal ct, Em is at most countably infinite. Thus, ("EEn)" = N. En' & Em is at
most countably infinite, so nº. En EcA.
6) First, we show limsup Ei = Az. Note that
XEA2 (=> XEEi for infinitely many i (=> Y KEIN, J i ≥ K s.t. XEE; XEIN, XEIEKEI
⇒YKEIN, Ji≥Kst. XEE
Y KEIN, XE EL
$\propto \chi \in \widetilde{\mathcal{O}} \widetilde{\mathcal{O}} E$
Next, we show liming E: = A1. Note that
XEAI => XEE; for all but finitely many i => 3 KE/N s.t. Vizk XEE;
=> JKE/NS.t. YIZK XEE! U
(=> 3 KEIN S.t. XE. NEI
(=) XE O PEI
K21 12K

(8)
Suppose f is continuous at $\chi \in \chi$. Then, for all sequences $\chi_n \to \chi$, $\lim_{n \to \infty} f(\chi_n) = f(\chi)$.
By $f(x) = \inf \{ \lim f(x) : \chi_n \to x \}$ $= \inf \{ f(x) \}$ = f(x).
Similarly, for(x)=sup {limsup f(xn): xn-)x}=f(x).
Now, suppose for (x)=f(x). Then
$f_{*}(x) = \inf \{ \liminf_{f(x_n): \chi_n \to \chi} \{ \inf \{ \limsup_{f(x_n): \chi_n \to \chi} \} $ $\leq \sup \{ \limsup_{f(x_n): \chi_n \to \chi} \}$
$= \int_{X} \int_{X} \int_$
$=f_{*}(\chi)$
Thus, equality holds throughout and, $\forall xn \ni x$, limsup $f(xn) = f(x)$. Similarly, $\forall xn \ni x$,
Thus, equality holds throughout and, $\forall xn \ni x$, limsup $f(xn) = f(x)$. Similarly, $\forall xn \ni x$, liming $f(xn) = f(x)$. Therefore, by $HW1$, Q1@, $\lim_{n\to\infty} f(xn) = f(x)$. This shows it is
Continuous at x.

E =
$$\{\chi: f_*(x) < f^*(\chi)\}$$

= $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
Pige $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
Pige $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: f_*(x) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: f_*(\chi) \le p\}$ $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: g \ge f^*(\chi)\}$
= $\{\chi: g \le f^*(\chi)\}$
= $\{\chi: g \ge f^*(\chi)\}$

This is a countable union of closed sets.

and
$$\mu(B_i) = \mu(x) < +\infty$$
. Thus,

$$\mu(Z) = \mu\left(\bigcap_{n=1}^{\infty} B_n\right) = \lim_{n\to\infty} \mu\left(B_n\right) = \lim_{n\to\infty} \mu\left(\bigcup_{k\geq n} A_k\right)$$

-	

Claim: Mi= {A \subseteq X: either A or A' is countable } is
the collection of ji-neasurable sets.

Assume AEMb. If A is courtable, $\mu^*(A)=0$, hence A is μ^* -measurable. If A' is countable, then the preceding sentence shows A' is μ^* -measurable, and since the collection of μ^* -measurable sets is a σ -algebra, A most also be μ^* -measurable.

Now, suppose A& Mb. Then neither Anor A's
is countable. Consequently,

w*(x)=172= w*(xnA) + w*(xnA').

Thus A is not w*-measurable.

(b) Claim M:= 2^x is the collection of v*-measurable sets

Fix ASX.

If E is countable, so are ENA and ENA, hence
V*(E)= O= N*(ENA)+V*(ENA').
If E is uncountable, then either
ENA or ENA' is uncountable. Thus,
ENA or ENA' is uncountable. Thus, \(\forall^*(E) = + \infty = \nabla^*(ENA) + \nabla^*(ENAC).
12)
a) By definition $\mu^*(\emptyset)=0$ and $A \in B = 0$ $\mu^*(A) = \mu^*(B)$. Given $\{A_i\}_{i=1}^{\infty} \in 2^{\infty}$, first, suppose $ VA_i =0$. Then $ A_i =0$ $\forall i$,
A (S). Given A : E : E E E E : E : E : E :
first suppose DAil = 0. Then Ail=0 Vi.
SO ~
$\mu^*(\mathcal{O}_{Ai}) = 0 = \leq \mu^*(Ai).$
Next, suppose D'Ail=1. Then there must be some i s.t. Ail=1.
Then there must be some i ct. [A: =]
$\mu^*(\mathcal{O}_{Ai}) = 1 \leq \mathcal{E}_{\mu^*(Ai)}.$
Noxt CLADONS (1) A: 1= 2
Next, suppose $ \overset{\circ}{U}Ai =2$. Then there must either be $i\neq j$ s.t. $ A_i = A_j =1$ or i s.t. $ A_i =2$. In both cases,
oc i et la:1=2 To both caren.
$\underline{\qquad \qquad }$
$\mu^*(\mathcal{O}_A_i)=1 \leq \mathcal{E}_{\mu^*(A_i)}$

Lastly, Suppose | UAil=3. Then there must either be i,j,k distinct with |Ail=1 or i and j distinct with |Ail=2, /Aj=1 or ks.t. |AKI=3. In all cases, $\mu^*(\mathcal{Q}_A_i) = 2 \leq \leq \mu^*(A_i).$ (b) Suppose A = X has one element. WLOG, A= {1}. Then, $\mu^*(\{1,2\})=1\neq 1+1=\mu^*(\{1,2\}\cap A)+\mu^*(\{1,2\}\cap A)$ Thus A and A are not ut meas. This shows My = {0, x3.

(c) ch is closed under complements and arlitrary unions. Thus, it is a or-algebra.

d) It suffices to show what is countably additive. The only nontrivial disjoint unions are of the form £130 £2,33.

In this case,

 M^{2} ($\{1\}\cup\{2,3\}$) = 2 = 1 + 1 = M^{2} ($\{1\}\cup\{2,3\}$)

