MATH 201A: HOMEWORK 5

Due Sunday, November 10th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice questions will appear on each exam. All answers should be justified with either a proof or a counterexample.

Question 1*

Consider a measure space (X, \mathcal{M}, μ) . Suppose $f : X \to \overline{\mathbb{R}}$ is measurable.

- (a) If $f \ge 0$ and $\int f d\mu < +\infty$, prove that $\{x : f(x) = +\infty\}$ is a null set.
- (b) Under the same hypotheses of part (a), prove that $\{x : f(x) > 0\}$ is σ -finite.
- (c) If $f \in L^1(\mu)$, prove that there exists $g: X \to \mathbb{R}$ so that $g = f \mu$ -a.e..

Question 2*

Let μ be a locally finite measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. (See HW4, Q1 for the definition and some key facts.) Define

$$B(x,r) = \{y : |y-x| < r\}, \quad \bar{B}(x,r) = \{y : |y-x| \le r\}.$$

- (a) Prove that, for all r > 0, $x \mapsto \mu(B(x, r))$ is lower semicontinuous. Hint: First, prove that $\mu(B(x, r)) = \lim_{n \to +\infty} \mu(B(x, r - 1/n))$.
- (b) Prove that, for all r > 0, $x \mapsto \mu(\overline{B}(x, r))$ is upper semicontinuous. Hint: How can you adapt the hint from part (a)?
- (c) For any $k \ge 0$, prove that

$$f(x) = \limsup_{r \to 0} \frac{\mu(B(x, r))}{r^k}$$

is Borel measurable. Hint: Write $f(x) = \lim_{r \to 0} G_r(x)$, where

$$G_r(x) = \sup\left\{\frac{\mu(B(x,\rho))}{\rho^k} : 0 < \rho < r\right\}.$$

Question 3

- (a) Suppose $\phi : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable, $\psi : \mathbb{R} \to \mathbb{R}$, and $\phi = \psi$ Lebesgue almost everywhere. Then ψ is Lebesgue measurable.
- (b) Now, suppose $\phi : \mathbb{R} \to \mathbb{R}$ is Borel measurable, $\psi : \mathbb{R} \to \mathbb{R}$, and $\phi = \psi$ Borel almost everywhere. Is ψ is Borel measurable? Justify your answer with a proof or counterexample.

Question 4*

(a) Given a Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ and a Lebesgue measurable set E prove that

$$\int_{E} f(x)d\lambda(x) = \int_{E+c} f(x-c)d\lambda(x) \quad \text{ for all } c \in \mathbb{R}$$

whenever the integral $\int_E f(x) d\lambda(x)$ exists.

(b) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a nondecreasing function that is differentiable Lebesgue almost everywhere. (In fact, you can prove in a later measure theory course that all nondecreasing functions are differentiable Lebesgue-almost everywhere!) Prove that

$$\int_{[0,1]} \limsup_{n \to +\infty} \frac{f(x+1/n) - f(x)}{1/n} \ d\lambda(x) \le f(1) - f(0)$$

Hint: It can be convenient to assume, without loss of generality, that f(x) = f(1) for all $x \ge 1$. Use part (a).

Question 5

Consider a measure space (X, \mathcal{M}, μ) and a sequence of nonnegative, measurable functions f_n satifying

$$f_n(x) \searrow f(x)$$
 for all $x \in X$ and $\int f_1 < +\infty$.

Prove that

$$\lim_{n \to +\infty} \int f_n = \int \lim_{n \to +\infty} f_n.$$

Question 6*

Consider a measure space (X, \mathcal{M}, μ) and a nonnegative, measurable function $f \in L^1(\mu)$. Prove that, for all $\epsilon > 0$, there exists $A \in \mathcal{M}$ so that $\mu(A) < +\infty$ and $\int_A f > \int f - \epsilon$.

Hint: use the definition of the integral in terms of simple functions, and choose a simple function with integral close to $\int f d\mu$.

Question 7*

Prove the following generalized dominated convergence theorem:

THEOREM 1. Consider a measure space (X, \mathcal{M}, μ) . Suppose $f_n, g_n, f, g \in L^1(\mu)$ are functions for which the following hold:

- (i) $f_n \to f \ \mu$ -a.e.,
- (ii) $g_n \to g \ \mu$ -a.e.,
- (iii) $|f_n| \leq g_n \ \mu$ -a.e.,
- (iv) $\int g_n d\mu \to \int g d\mu$.
- Then $\int f_n d\mu \to \int f d\mu$.

Suppose (X, \mathcal{M}, μ) is a measure space and $f: X \to [0, +\infty]$ satisfies $f \in L^1(\mu)$. Prove that, for all $\epsilon > 0$, there exists $\delta > 0$ so that if $E \in \mathcal{M}$ satisfies $\mu(E) < \delta$, then $\int_E f d\mu < \epsilon$.

Hint: Proceed by contradiction, so that you can find a sequence $E_n \in \mathcal{M}$ with arbitrarily small measure so that $\int_{E_n} f d\mu \geq \epsilon$. Consider the set $A = \bigcap_{n=1}^{+\infty} \bigcup_{k>n} E_k$.

Question 9

Consider a measure space (X, \mathcal{M}, μ) .

- (a) Fix a nonnegative, measurable function f. Prove that $\nu(A) := \int_A f d\mu$ is a measure on \mathcal{M} .
- (b) Suppose $(X, \mathcal{M}, \mu) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$, where λ is Lebesgue measure. Fix $f \in L^1(\lambda)$. Consider the cumulative distribution function

$$F(x) := \int_{(-\infty,x]} f d\lambda$$

Prove that F is continuous.

(c) Given an example of a Borel measure μ on the real line for which the cumulative distribution function

$$F(x) := \int_{(-\infty,x]} d\mu.$$

is *not* continuous.

Question 10

In this question, you will show why the limit in Fatou's lemma can't be naively replaced with a lim sup. Fix Give an example of a measure space (X, \mathcal{M}, μ) and sequence of nonnegative measurable functions $\{f_n\}_{n \in \mathbb{N}}$ so that f_n converges pointwise to some f but

$$\limsup_{n \to +\infty} \int f_n d\mu < \int \limsup_{n \to +\infty} f_n d\mu.$$