
 

Lecture 10

Recall

The Beppo Levi Given
fn n X O measurable
functions then

Ei s fnder SEE fndu
Them Fatou's Lemma Given
fn n X 0 to measurable

lining sendmefliniff finder



Prof Given f X 0,1 8 meas

Sfdu 0 f Oprae

Integrationof Real valuedFunctions
Treasure

space X.edu
Given f X R definepositive part
f fv0 f f f
f f v0 If f tf

negativepart

D



Def Given fix R meas if
either Sftdu or Sf du is finite

Sfdm 5ftdu S f du
Sfttf du to Slf ducts
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finite w̅ésaj F is integrablearid write ft left

Prof L7u is a real vector space
and
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Rearranging gives to
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Goal Wish we could show

Leful is a metric space in fact
a normed vector space

Guess for metric
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Problem this is degenerate
Ex f 1 u g

0

Then Ilf glley If Idx 0

but f
g

Car If f get b then

Slf gldu 0 f
g m

a e



Pf This follows from previous
proposition

Moral
If
youmodify

an integrable
function on a null set it
doesn't change the integral

Isfdu Sgdul Slf glder
Even if a function f is only
defined m a e Sfdu is

still uniquely determined

This motivates a modified defn
of 27m
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Pf
nondegenerate
triangle inequ
positive homogeneity

Previously we used
montonicityto interchange limits and

integrals of nonnegfris Now
we use boundedness to do
so for real valued frsMAJOR THMG
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subtracting Sg from
both sides

Slid for limffn

EE.EE
Tm for flimfn
Thus equality holds
throughout which givesthe result

We will now apply
DCT

to identify two useful
subsets of functions that
are dense in Ef



MAJOR THMA

The For any
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x char simple functions
are dense in Lta

If u is a Lebesgue Stielties
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This shows simple fors are

dense in L a

Finish next time


