Lecture 12 Recall :

Thm : Fix a<b and consider f: X × [a,b] -> IR. Denote $(\chi,t) \mapsto f(\chi,t) \in \mathbb{R}$ Suppose that is denote a representative of equiv class (i) $f(\bullet,t) \in L^{1}(\mu)$ $\forall t \in [a,b]$ (ii) $\partial f(\chi,t) \in \chi(\chi,t) \in \chi(x_{a},b]$ ∂t (iii) Z gelt/ws.t. $\frac{\partial f(x,t)}{\partial t} \leq g(x) \forall (x,t) \in X^{*}[a,b]$ Then t H> Sf(x,t)du(x) is differentiable

and $\tilde{a} \in f(x,t) = \int \tilde{\partial} t f(x,t) d\mu(x)$

Modes of Convergence (χ, M, μ) $f_{n,f}: \chi \to \mathbb{R}$ meas Duniform convergence sup 11 2 pointwise convergence fn(x) >f(x) txeX 3 pointuise a.e. conv fn(x) > f(x) ura exeX €L¹ convergene ||fn-f||_{L¹(u)} >0 How are 3+9 related?

· We will now work up to showing (4)=)(3) "up to a subsequence"() ∃fnk s.t. fnk→fura.e. not R Del: A sequence of measurable functions $f_n: X \rightarrow \mathbb{R}$ converges in measure to a measurable function $f: X \rightarrow \mathbb{R}$; f, $\forall z > 0$,

 $\lim_{n \to \infty} \mu[\{x: |f_n(x) - f(x)| \ge \xi \} = 0.$

 $\lim_{m,n\to\infty} \mu[\{x:|f_n(x)-f(x)] \ge \xi \} = 0.$

Rmk: We will show on HW that, if $\mu(\chi) < t \infty$, then convergence in measure is metrizable.

Rmk: Recall that, on any metric space, if a sequence is convergent, it must be cauchy. Rmk: In fact, for all (χ, M, u) (even $\mu(\chi) = + \infty$), fn convergent in measure =) fn Cauchy in measure.

Thm: Consider fn: X->R meas. (i) I f fn is Cauchy in measure, then I f: x-> Rmeas. s.t. (a) fn→f in measure (b) ∃ fnk S.t. fnk → f wa.e. (ii) If, in addition, fn→q in measure, then f=& wa.e. Pf: First, we find ourquesstorf. Since fn is Cauchy in measure, there exists a subsequence $f_{n_k} s.t. \forall k \in IN$, $g_{k(x)}$, $g_{k+1}(x)$ $u(\{x\}: |f_n(x)-f_n(x)| \ge \frac{1}{2^k}\}) \le \frac{1}{2^k}$ Ėĸ

By countable subadditivity, $M(U \in K) \leq \sum_{k=0}^{\infty} \mu(E_k) = \frac{1}{2^{k-1}}, \text{ flen}$ k = k = k = kFe XEEKforanyk2l Note that, if $x \notin F_{e}$, then for $i \ge j \ge 2$ $|g_i(x)-g_j(x)| \leq \sum_{k=j}^{j} |g_k(x)-g_{k+j}(x)|$ $\leq \sum_{k=1}^{r} \sum_$ Thus, if x & Fe for some le IN, then EgilXIJi=1 = R is (auchy) so it converges to is sogilx) ER.

Let F= nFe e=1 Define $f(x) = S_{i} = S_{i}$

Note that, for once $l \in IN$, $\mu(F) \leq \mu(Fe) \leq \frac{1}{2^{2}} = 2\mu(F) = 0$. Therefore, fink = qk -> f prae. This completes the proof of (i)(b).

Now, we show (i)(a).

 $If x \notin F_e \text{ and } i \ge l$ $|f(x) - q_j(x)| = \lim_{i \to \infty} |q_i(x) - q_i(x)| \le \frac{1}{2j-1}.$

Therefore if j=l and $|f(x) - q_j(x)|^2 = \frac{1}{2j} - 1$

we must have x E Fe

Thud, ¥ 270 and LENSufflarge, s.t. 27 ze-1, if j=2, $\mu\{\{\chi: |f(\chi) - q_j(\chi)| \ge \varepsilon\}\}$ $\leq \mu [\{ \chi : | f(\chi) - g_j(\chi) | 2j - j]$ $\leq \mu(Fe) \leq \frac{1}{2e-1}$

Thus, $\lim_{j \to \infty} \mu(\xi_{\chi}; (f(\chi) - g_j(\chi)| = \xi_j) = 0$

su gj >f inneæbare. Finally, for one E>O, jEIN, $\begin{aligned} & \{\chi: |f_n(x) - f(x)| \ge \xi \} \\ & \leq \{\chi: |f_n(x) - q_j(x)| \ge \frac{9}{2} \} \\ & \quad U \{\chi: |f(\chi) - q_j(x)| \ge \frac{9}{2} \} \end{aligned}$ =) $\mu(2\chi; |f_n(x) - f(x)| \geq \epsilon_{f})$ $= \mu[\{x: |fn(x)-g_j(x)| \ge \frac{6}{2}\} + \mu[\{x: |f(x)-g_j(x)| \ge \frac{6}{2}\}]$

Since the RHS >0 as n, j-700, we conclude that fn-> fin meas.

Finally, we show (iii). Suppose fn>a in measure. Fix E>O. Then,

Since the measure of RHS >0 $w_{2} \rightarrow +\infty$, $u(\xi_{x};\xi_{y}) - f(\xi_{x})|z \in f)=0$.

Thus g=f pta.e.

Yrop: (a) If fn is (auchy in L¹(u), then it's lauchy is measure. (6) If fn is convergent in L'(w), then it's convergent in measure.

First, we will show $(a) = \chi(b)$. Suppose for is convergent in $L^{2}(w)$.

Then, since 2¹(u) is a metric space, fn is Cauchy in 2¹/ul. By (a), fn is Cauchy in measure. By previous Prop, fn is conversent in measure. Now, we show (a). Fix 270. Define $E_{n,m,\epsilon} := \{\chi: |f_n(\chi) - f_m(\chi)| \ge \epsilon \}$ Then,

 $\mathcal{E}\mu(\mathcal{E}n_{i}m_{i}\varepsilon)$ = $S \mathcal{E} \mathcal{O}_{\mathcal{P}}$ Enme $\leq \int fn(x) - fm(x) dg(x)$ Enjmie $= \|f_n - f_m\|_{L^2(\mu)}.$

We see that RHS >0 as n,m->as. Thus, LHS=0, hence for is Couchy in measure. Con: If fn is Cauchy in L'(m), then J f E L I (m) and a subsequence fnx S.t. fnx >f va.e.

Recall: Any Cauchy sequence in a metric space is bounded.

It remains to show $f \in L^2(\mu)$.

By Fatou's Lemma, SIFIQUE = Sliminflfnxldu $\leq \liminf_{k \to \infty} \|f_{n_k}\|_{L^2(\mu)} < +\infty,$ Since fn is bounded in L²(µ). I MAJOR THEOREM a Cor: L¹(u) is a Banach space, that is, a complete normal rector space.

Pg: het fn be (auchy in L¹/µ).

By Cor, J-feller and a Subseq fnk S.t. fn =>f u-a.e. By Fatou's lemma, $SIfn_{k}-fld\mu = Sliminalfn_{k}-fnjld\mu$ < limin SIFnx-fnjldu Since f_{n} is Cauchy $\ln L^{2}(\mu)$. RHS $\rightarrow \cup \alpha \delta k \rightarrow \pm \delta$. Thus $f_{nk} \rightarrow f \text{ in } L^{2}(\mu)$.

Since $2^{4}(\mu)$ is a metric space, by Δ ineq, we must have $f_{\mathcal{H}} \rightarrow f$ in $L^{2}(\mu)$. \Box

rary of Modes of Sam fn > fin L¹/m In ~ fin L¹/m Fn > f in measure I up to a subsequence 173 Fn > f mar.

Mexttime: Egeraff's Theorem