Lecture 14 Recall :

MAJOR THEOREM 10 Thm (Egorolf): Suppose $\mu(x) < too$ and fm f: IX => R readurables.t. fn>f pae.

Then, $\forall \epsilon > 0$, $\exists E \epsilon \mathcal{M} s.t.$ $\mu(\epsilon) < \epsilon s.t.$ $f_n \Rightarrow f uniformly$ on E^{c}

Cor: Suppose $\mu(x) < +\infty$ and $f_n, f: x > \mathbb{R}$ measurable s.t. $f_n > f_{\mu-a.e.}$. Then $f_n > f_{in}$ measure.

het Ella, Malfaer be a countable
collection of measurable spaces • $\chi := \pi \chi_{\alpha} = \chi_{1} \times \chi_{2} \times \ldots \times \chi_{\alpha} \times \ldots$

· Let The clenote projection of Xonto Xa

le product 5-algebra is USTEX: EXECUZ XEA rectange" Prop: Given $\mathcal{E}_{\mathcal{A}} \subseteq 2^{\mathcal{X}_{\mathcal{A}}}$ s.t. $\mathcal{X}_{\mathcal{A}} \in \mathcal{E}_{\mathcal{A}}$, suppose $\mathcal{M}_{\mathcal{A}} = \mathcal{M}(\mathcal{E}_{\mathcal{A}})$. Then $M[\pi E_{\lambda}: E_{\lambda}\in E_{\lambda})$ $\begin{array}{l} (X) \\ \forall \mathcal{A} \\ \forall \mathcal{A} \\ \forall \mathcal{A} \end{array} = \mathcal{C} \\ \forall \mathcal{A} \\ \forall \mathcal{A}$

topological: see Bogacher 6.4.2 Thm: Given metricspaces $\chi_1, \chi_2, \ldots, \chi_n$ and $\chi := \pi \chi_i$ endowed with the metric $d_{max}([x_{1}, x_{2}, ..., x_{n}], (y_{1}, y_{2}, ..., y_{n}])$ = max $d_{i}(x_{i}, y_{i})$. i=1,..., nThen, & By = By. Furthermore, if the χ_i 's are all separable, then $B\chi = \bigotimes B_{\chi_i}$. \exists constable dense subset.

Rmk: Imax is convenient because

 $B_{r}(x_{1},...,x_{n}) = \sum_{i=1}^{n} (y_{1},...,y_{n}) \cdot d_{max}(\vec{x},\vec{y}) < r$ $= \sum_{i=1}^{n} \cdot d_{i}(x_{i},y_{i}) < r \forall i$ $= \sum_{i=1}^{n} B_{r}(x_{i})$

Kmk: However, since the defn of Bx only depends on the topology of X, this result continues to hold if dnax is replaced by any equivalent matric.

(Recall: Fact#1: If $\chi_1, \chi_2, ..., \chi_n$ are n Separable, then so is $\chi = \prod_{i=1}^{n} \chi_i$.

Fact #2: In a separable metric space, every open set can be written as a countable union of (open) balls. Fact #3: Pf: For the first part of the theorem, note that, by Prop, $\bigotimes_{i=1}^{n} \mathbb{B}_{\chi_{i}} = \mathcal{M}(\mathcal{T} E_{i} : E_{i} \in \chi_{i}, E_{i} \text{ open})$ $\underset{Fact #3}{}^{m} = \mathcal{M}(\mathcal{T} E_{i} : E_{i} \in \chi_{i}, E_{i} \text{ open})$ EMU: UEX, Uopen} $=:\mathbb{B}^{\chi}$

Now, suppose X, X2,..., Xnare separable. By Facts#1,2, every open subset of X can be whitten as a could table union of balls. Thus, it suffices to show that, for any ball BEX, BEBR; = MATEI: Ei EX; Eiopent Since X is endowed with Amax, B=TIBi, for B; EX; Biopenball, this is immediate.

Product Measures

Measure spaces (X, M, M) (Y, M, V) Rectangles A×B, AEM, BEN Mon=M(EA>B:Aen, Beng) Goal: Prove existence of a unique measure NON on the measurable space (X × Y, MEM) so that $MOV(A \times B) = \mu(A) \vee (B)$ for all rectangles with u(A), V(B) <+00 Br-drivi L----

This motivates the development of necessary conditions to ensure a measure) is unique... ... will do with Monotene Class theorem.

Recall: Fixa nonempty subject X. Del: A is an algebra of subsets of X if it is a nonempty collection that is closed under finite unions and complements.

Rmk: Ø, XECA

Brop: Given any $E \leq 2^{\chi}$ nonempty, there exists a smallest monotone class containing E, denoted C(E).

ff: HW or practice midterm

Thm: (Monotone Class Theorem): Given an algebra $cA \in 2^{\infty}$,

C(A) = CM(A)

Pf: Since $\mathcal{M}(\mathcal{A})$ is a monotone class, we immediately obtain $\mathcal{C}(\mathcal{A}) = \mathcal{M}(\mathcal{A})$.

To prove $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{C}(\mathcal{A})$, it suffices to show $\mathcal{C}(\mathcal{A})$ is a solution $\mathcal{C}(\mathcal{A})$ is a \mathcal{C} -algebra. $\mathcal{C}:\mathcal{C}$ For any EEC, define E= FEC: ENF, FNE, FNEC3 (i) Note that E, ØEEE (ii) $FEE_E \iff EEE_F$ (iii) if E, FECA, then FEE. (iv) CLAIM: For any EEC, EE is a monotone class

Jaim: SEisi=, E, E, EE2G.... Ü Ei E E E. $E \setminus (\bigcup_{i=1}^{\infty} E_i) = E \cap (\bigcap_{i=1}^{\infty} E_i^c) \in C$ for each i $= \Lambda (E \Lambda E_i) = \Lambda (E \backslash E_i)$ $\frac{\partial \mathcal{E}}{\langle \mathcal{V} E \rangle \langle \mathcal{E} \rangle \langle \mathcal{E}$ (VEI)NE= V (EINE)EC hus DEiEEE Via a similar argument, EE is closed

This shows C is closed under complements.

Thus, Cis closed under finite unions. Hence Cis an algebra.

salgebra. Therefore C is a s-algebra. D Now: sufficient conditions for uniqueness of massures. Thm (uniqueness of measures) Suppose... · À = 2^x is an algebra er and være mod dures, on M(cA). "stronger finiteness" • 7 3 A i j i i i A $\mu(Ai) < +\infty, \forall i.$

Then $\mu(A) = \nu(A) \forall A \in \mathcal{A} = \mathcal{I}_{\mathcal{I}} = \mathcal{I}_{\mathcal{I}}$

Recall from lecture: Given measure space (χ, M, μ) , $\forall A \in M$, $\mu_A(E) = \mu(E \cap A)$ is a measure on (χ, M) .

Of: $(axe 1: \mu(x) < t as (so v(x) < t as).$

 $\mathcal{M}(\mathcal{A}) = \mathcal{C}(\mathcal{A}) \subseteq \mathcal{E}$

·Similarly, E is closed under countable decreasing intersections by cty from () above, since x(X) () + 00.

Thus E is a monotone class.

WLOG, Le may assume A; in strong 5-finiteness hypothesis are dispoint.

(Otherwise, B,=A, B2=Az\A,...)

Define $\mu_i(E) = \mu(A_i \Lambda E)$ $\nu_i(E) = \mu(A_i \Lambda E)$

These are finite measures on \mathcal{X} . By case 1, $\mu_i = \mathcal{V}_i$.

 $= \sum_{i=1}^{\infty} \sqrt{E(A_i)} = \sqrt{E}.$

Thus $\mu = \nu$.

= End of Material for Midtern 2 ====