









 
Lecture 17

Im Consider o finite measure

Espaces X Ma Y N u
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The following theorem shows
that our construction of the
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that
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texts
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While it is conventional to
consider uion BR Bad

for any collection of Lebesgue
Stieltjes measures uj
we do not define defined dime Lebesgue measure
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Since A EUF Rj UYRj

A TE is not a lower bound
for the set

Therefore we conclude 79A
is the greatest lower boundfor the set

d

Rmk HW7 QS Mp Mad

Happy Thanksgiving


