Lecture 1

Why measure theory? Q: What is the "total length" of an arbitrary set  $E \leq R$ ? Power set TCan we define a function  $\mu: 2R \rightarrow [0, tot]$ so  $\mu(E) = \int d - dimensional measure of E''$ 

Properties we'd like to have ... • For d=1, E=[a,b], want  $\mu(E)=b-a$ . · For & Iizi=1 disjoint intervals, we'd want  $\mu(\bigcup_{i=1}^{n} T_i) = \sum_{i=1}^{n} \mu(T_i)$ · But what about E = RN[0,]? f(x) What about the are  $\alpha$ under the graph of f(x),  $\chi$  for f(x) arbitrary? Sf(x)&x

Pre-measure theory: Riemann Integral rigorous deln of integral of, e.g., p.w. cto fins in terms of upper/lower sums · PROS good enough for "ordinary" functions · Const not good for taking limits For example, given  $f_1, f_2, f_3, \dots; [a,b] \rightarrow \mathbb{R}$ s.t.  $\lim_{n \to \infty} f_n(x) = \int f(x) \forall x \in [a,b].$ "pointwise convergence" when can we conclude that  $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx?$ 

Measure theory: a much more powerful theory of integration than the Riemann integral

PROS: a much larger class of functions is Lebesque integrable Detter for taking limits of fins consequently better suited for probability functional analysis, PDE

CONS: None:

First goal: define a function  $\mu:2^{\mathbb{R}} \rightarrow [2, tw]$ Satisfying the following  $D \equiv f \notin Eifi=1 \leq 2^{\mathbb{R}} (or \notin Eifi=1 \leq 2^{\mathbb{R}})$ are disjoint, then  $\mathcal{M}\left(\bigcup_{i=1}^{n} E_{i}\right) = \bigotimes_{i=1}^{m} \mathcal{M}\left(E_{i}\right) \left(\mathcal{M}\left(\bigcup_{i=1}^{\infty} E_{i}\right) = \bigotimes_{i=1}^{\infty} \mathcal{M}\left(E_{i}\right)\right)$ 

Del: If u: 2<sup>R</sup> ~ [0, tow] satisfier critteria (), it is finitely additive (countable additive).  $2\mu([a,b]) = b - \alpha$  $(\exists)\mu(E+c)=\mu(E)$  for all  $C \in \mathbb{R}, E \in \mathbb{R}$  $= \{\chi + C : \chi \in E\}$ Def: If y: 2<sup>R</sup> > [0, + m] satisfies critteria (3), it is translation invariant. Thm: (Vitali) No such function exists. Lemma (monotonicity) Given a set  $\mathcal{X}$ and  $\mu: \mathcal{I}^{\mathcal{X}} \rightarrow (0, +\infty)$  is finitely additive, then  $\forall A, B \subseteq \mathcal{X}$ ,  $A \in B =) \mu(A) \leq \mu(B).$ 

Pl: Finite additivity vonne gastrit mply  $\mu(B) = \mu(AU(B\setminus A))$  $=\mu(A) + \mu(B\setminus A)$  $= \mu(A)$ P.J. of Thmi Assume, for the sake of contradiction that such a prexist. Défine an équivalence relation on R:  $\chi \vee \chi \ll \chi - \chi \in \mathbb{Q}.$ [x] := EyeR: ynxg Claim 1: Every equivalence class contains an element in [0,1].

For each equivalence class, choose an element in (0, 1] belonging to that class, and call the U resulting set A Warning: Axiom of Choice Bogache |.|2(x)Let B = UA+q  $q \in Q \cap E \mid, \mid$ Claim 2: this is a disjoint union ≥f:HW1 (ii)Claim 3: [0, 1] = B = [-1, 2] (i) For any  $\chi \in [0, 1]$ ,  $\chi \in [a]$  for some  $a \in A$ . Thus,  $\chi - a = q$  for  $q \in Q$ . Since  $\chi \in [0, 1]$ ,  $a \in [0, 1]$ ,  $q \in [-1, 1]$ . Thus  $\chi \in B$ .

If be B, then b=a+q for some  $a \in A \in [0, 1]$  and  $q \in [-1, 1]$ , thus  $b \in [-1, 2]$ . By monotonicity lemma and coitenion 2)  $1 = \mu([0,1]) = \mu(B) = \mu([-1,2]) = 3$ However, by criteria (1) and (3),  $\mu(B) = \sum \mu(A+q) = \sum \mu(A)$   $q \in Q \cap (-1, 1) \quad q \in Q \cap (-1, 1)$ Since  $\mu(B) \leq 3$ ,  $\mu(A) = 0$ . Thus u(B)=0. This contradicts that u(B) 21. D

Which criterion do we weaken to get existence of such a measure? Notion of size If we weaken () to finite additivity, there are still problems for dz3: () Banach-Tzarski Paradox (1924) Fi is a rotation Atranslation of Ei. Bogacher 1.12(xi) If we weaken criteria 2 or 3, no longer compatible with usual notion of length. measure Iwo good choices. · don't requise in to be defined on all of 21R • still define u on all of 2<sup>R</sup>, but replace countable additivity with countable subadditivity.



outer measure









Let X be a set.

 $\leq 2^{\chi}$  is an alger if it is managed 1/2e ís non E () closed under finite unions " "rloge 1000 5 lemen