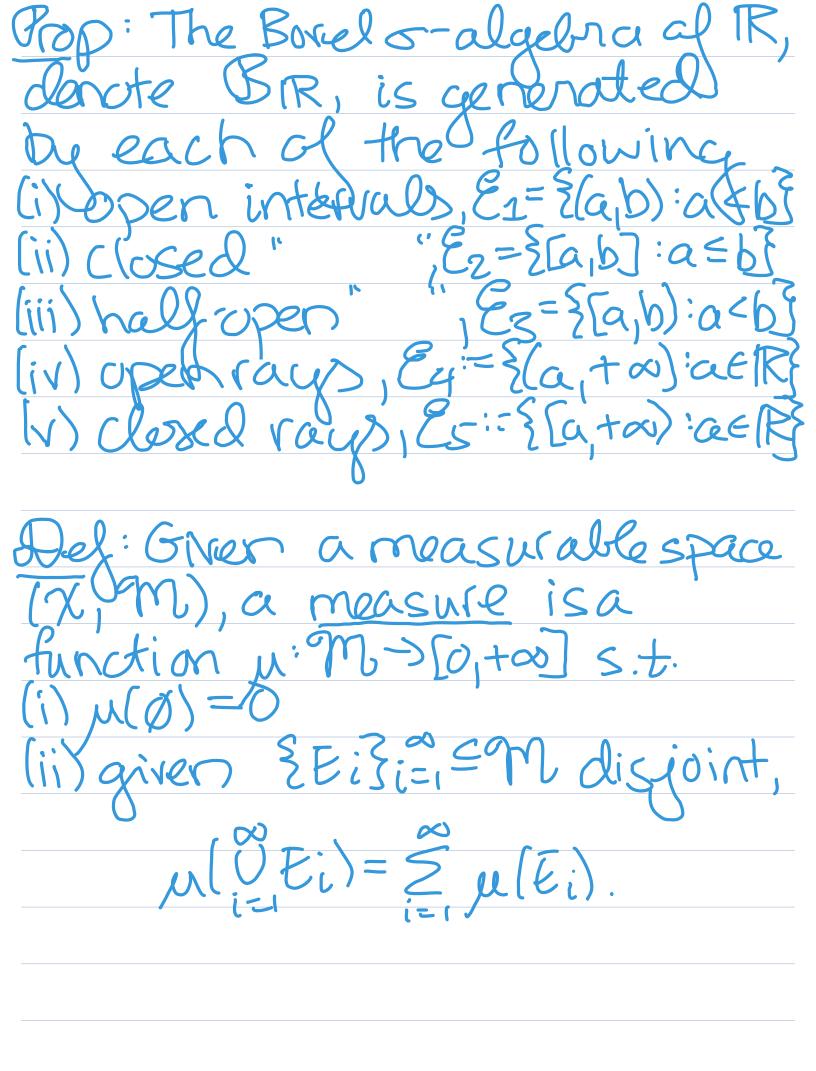
Lecture 3
Recall:
Let X be a nonempty set
Del: A nonempty collection of
Def: A nonempty collection of sets $cA = 2^{x}$ is an algebra if it is closed under finite unions and complements.
Jemma: If $CA = 2^{x}$ is an algebra; $OPECA$, $XECA$ $OPECA$ is closed under finite intersection
Le Closed and Invite intersection

Def: CL = 2x is a o-algulra
of subsets of X if it is an
algulra and if it is closed
under countable unions.

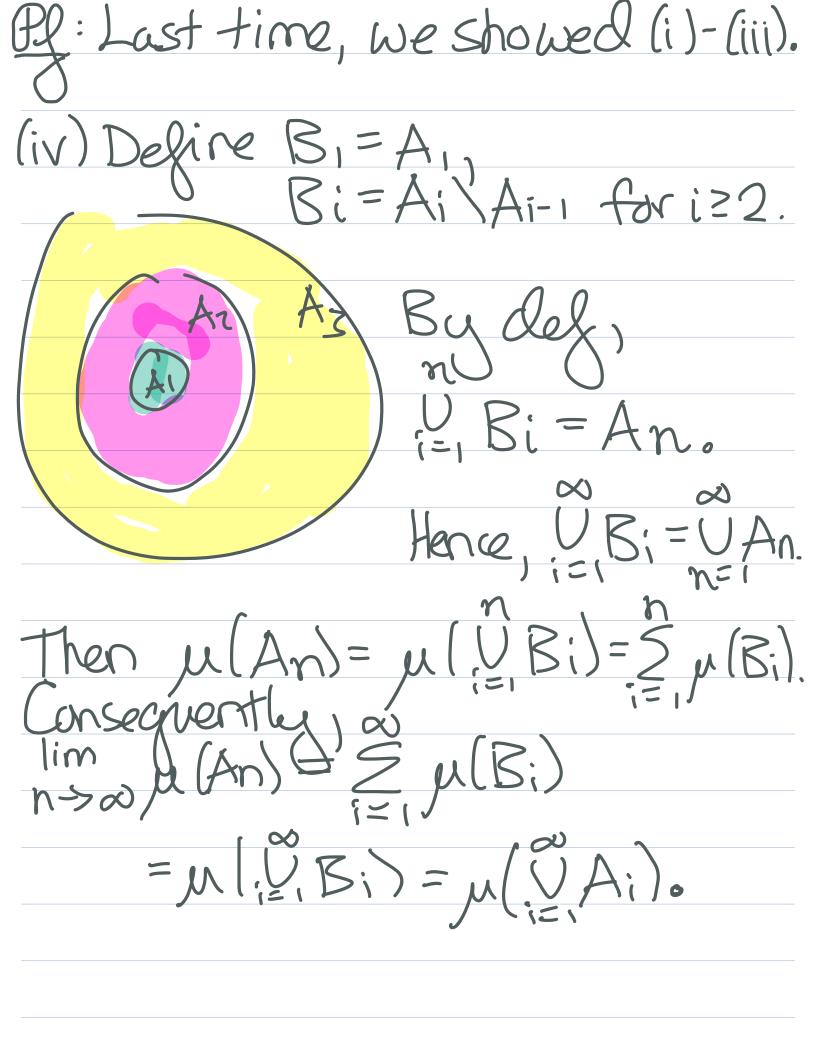
Del: Given a nonempty set Xand a 5-algebra eM= 2x, we will call (x, eM) a measurable space. We will call EEM a measurable set.

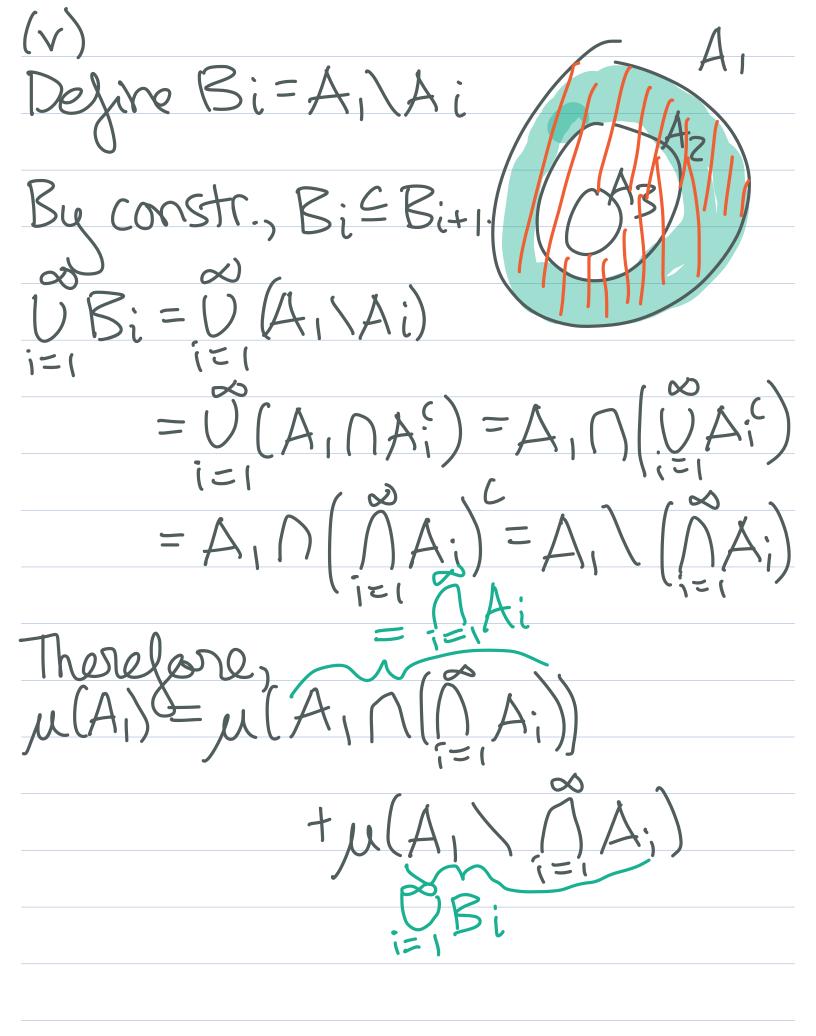
Brop: Given any &=2x there exists a smallest stalgebra containing &, which we denote etals and refer to as the o-algebra generated by &.

Recall: a topology I on X
Recall: a topology I on X is a collection of subsets of
X that contains & and 20
and is closed under
arbitrary unions and finite intersections. Elements of
intersections. Elements of
Tare called "open sets".
Let (7, T) be a topological Space.
Space.
Del: The Borel 5-algebra
of D. denute (B(X), is the D-algebra generated by T. Its members are known
D-algebra generated by T.
Its from bords are known
as Borel sets.



We call (x, m, y) a mousure space.
space.
Thm: For any measure space (x, m, u) and A, B & M, & &
(i) $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$
(i) $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$ (ii) $A \subseteq B$, $\mu(A) < +\infty$ $\Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A)$
(iii) $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$
(iv) Ai C Ai+ I Hi =) u(U Ai)= lim WAi) cty from below
(v) Ait, E Ai Vi, $\mu(A_i)$ < + ∞ cty =) $\mu(\bigcap_{i=1}^{n} A_i) = \lim_{i\to\infty} \mu(A_i)$ above





 $=\mu(\bigcap_{i=1}^{n}A_i)+\lim_{i\to\infty}\mu(B_i)$ $=\mu(\hat{A}_i)+\lim_{i\to\infty}\mu(A_i)-\mu(A_i)_{7}.$ Realiancying giles

lim $\mu(A_i) = \mu(A_i)$ $\mu(A_i) = \mu(A_i)$ Ex: (Why u(A) < too is nocessory for the from above.) $\chi=N$, m=2N, $\mu(E)=|E|$ Let Ai = EneN: nzi} nAi = Ø

However liss pelAi)=+0.
Measure reminatorers
Measure Terminology (MM, M)
· mis finite measure if m(X) < + \in
Mis a 5-titute measure it
· u is finite measure if u(x) < + \alpha · u is a 5-finite measure if I {E;} = \alpha cmd u(E;) \(\tau \) \(\tau \) \(\tau \) \(\tau \).
· Et 27 is a null set (of w)
ic Ecm and ic Ic
· We say that a property holds
(u)-almost every x EX if the
We say that a property holds (w) almost every x EX if the set of points where it fails is a null set.

Then $\mu(\bigcap_{i=1}^{n}A_i)=0.$

abbleviate: praie or ae.
Recall initial goal:
tind a measure u on (IK, IS whore u((a,b)) = b-a and u
Recall initial goal: Find a measure u on (R, B where $u((a,b)) = b-a$ and u is translation invariant.
measure exists giveup
In order to prive such a measure exists give up countable Outer Measures additivity
-
Del: An outer measure on χ is (afunction $\mu^{*}: 2^{\chi} - \gamma [o_{i} + \infty] s$ (i) $\mu^{*}(\emptyset) = 0$
$(i) \mu^{*}(\emptyset) = 0$

(ii) $A \subseteq B = \mathcal{N}(A) \subseteq \mathcal{N}(B)$ (iii) $\mathcal{N}(\mathcal{O}) = \mathcal{O}(A)$ (iii) $\mathcal{N}(\mathcal{O}) = \mathcal{O}(A)$ (iii) $\mathcal{N}(\mathcal{O}) = \mathcal{O}(A)$ (iv) $\mathcal{O}(A) = \mathcal{O}(A)$ (Kmk: Ex: (Lebesane outer measure) Define u: 02R > 50, too) by $\mu(A) = in \{ \{ \{ \{ \{ \{ \} \} \} \} \} \}$ We will prove μ^* is an $a_i \leq b_i$ outer measure. $\mu^*((a_ib)) = b-a$, $a \leq b$.

To see this... $\Box a_i = a, b_i = b, a_i = b_i = 0 \forall i \ge 2.$ Then b-aES, so $inl(S) \leq b-a$. I Sinke any choice Eaisien, Ebisi=n mast satisfy (a,b] = U(ai,bi) the total tenath o the covering must at least bita. Thus b-a is a lower bound for S and in((s)=b-a. will rigorously justify soon · ux is translation invariant · Is it countable additive? No!

But: we will show that it
becomes countably additive
when restricted to "nice
enough " sets
which sets are "nice
$\Delta \Delta \Delta = C + D \Delta^{-1}$
Given ong ordermasure et,
Given any order massure ut, Del: A = X is ut measurable if
HUP(E)= IP(ENA)+IP(ENA), HESX
(1 1 c 2 col = 0 (+ - 0 1 · · / 1)
"A breaks apart any set nicely"
Let 90 mas = $\{A \subseteq \chi : A\}$ is u^* -mass
is in - mass

Rmk: By courteble subadditivity = holds(h) for all A = X.
= holds(h) for all ASX.
Thus, to show AEMus, it suffices to show = in (t).
17 SWATILED TO STIOW - (1) (T).
Prop: For any outer measure it.
Prop: For any outer measure us, if us (B)=0) then BEMUS.
Pf: For all EEX, by monotonicity,
AICIO CO PORO
11°(E)≥ 0 + 11°(ENB°) = 11°(ENB) + 11°(ENB°) D
MIELIDIN MIELIDI
Thro (Canathóndon): Given an
Thrn (Carathéodony): Given an outer me as we just)

(i) Mut is a 5-algebra
(ii) My is a s-algebra (iii) m* is a measure on My
Q: Is this the "larged"
s-algebra on which It is a
measure?
Q: Is this the "larged" s-algebra on which he is a measure? A: No i. See HW3.
Prop: Mr is an alcebraard
Prop: My is an algebra and unis finitely additive on my.
M.Z.
Pl:
Since w*(0)=0=>0EMw*, hence Mu* is nonempty finish next time:
honce Mux is nonempty
linish noxt time

-