Math 201a: Midterm 2

Thursday, October 24, 2024

Name: _____

Student ID #: _____

Signature: _____

This is a closed-book and closed-note examination. Please show your work in the space provided. You may use scratch paper. You have 1 hour and 15 minutes.

Question	Points	Score
1	10	
2	10	
3	10	
Total	30	

Question 1 (10 points)

Consider a measure space (X, \mathcal{M}, μ) and $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$. Recall that

$$\limsup_{i \to +\infty} E_i := \bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} E_i , \qquad \liminf_{i \to +\infty} E_i := \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} E_i .$$

- (a) Prove that $\liminf_{i \to +\infty} \mu(E_i) \ge \mu(\liminf_{i \to +\infty} E_i)$.
- (b) If $\mu(\bigcup_{i=1}^{\infty} E_i) < +\infty$, prove that $\limsup_{i \to +\infty} \mu(E_i) \le \mu(\limsup_{i \to +\infty} E_i)$.
- (c) Give a counterexample to show the result from part (b) does not hold without the hypothesis $\mu(\bigcup_{i=1}^{\infty} E_i) < +\infty$.

Suppose $0 < \lambda^*(A) < +\infty$. Prove that, for all $\epsilon > 0$, there exists a nonempty interval $(a, b], a, b \in \mathbb{R}$ so that

$$\lambda^*(A \cap (a, b]) > (1 - \epsilon)\lambda^*((a, b]).$$

Hint: estimate $s := \sup_{a < b \in \mathbb{R}} \lambda^*(A \cap (a, b]) / \lambda^*((a, b])$ —for example, can you show that for any covering $\{(a_i, b_i]\}_{i=1}^{\infty}$ of A, we have $\lambda^*(A) \leq s \sum_{i=1}^{\infty} \lambda^*((a_i, b_i])$?

Question 3 (10 points)

Consider a metric space (X, d) endowed with a σ -algebra \mathcal{M} . Parts (a) and (b) are unrelated.

- (a) Prove that any lower semicontinuous function $f: X \to \overline{\mathbb{R}}$ is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ -measurable.
- (b) Suppose $X = \mathbb{R}$. Prove that any monotone function $f : R \to \overline{\mathbb{R}}$ is Borel measureable.