MATH 201A: MIDTERM 2 PRACTICE PROBLEMS (Not to be turned in.)

Question 1

The goal of this question is to prove the following special case of Lusin's theorem.

THEOREM 1 (Lusin's Theorem). Consider a closed interval $[a, b] \subseteq \mathbb{R}$. Suppose $f : [a, b] \to \mathbb{R}$ is Lebesgue measurable and bounded. For all $\epsilon > 0$, there exists a compact set $E \subseteq [a, b]$ so that $\lambda([a, b] \setminus E) < \epsilon$ and $f|_E$ is continuous.

- (a) For any bounded, Lebesgue measurable function $f : [a, b] \to \mathbb{R}$, prove that there exists $\{g_k\}_{k=1}^{\infty} \subseteq C_c(\mathbb{R})$ so that $g_k \to f$ pointwise λ -a.e on [a, b].
- (b) For the sequence from part (b), prove that, for all $\epsilon > 0$, there exists a compact set $E \subseteq [a, b]$ so that $\lambda([a, b] \setminus E) < \epsilon$ and $g_k \to f$ uniformly on E.
- (c) Apply the results of parts (a) and (b) to complete the proof of the theorem.

Hint: In order to apply Egoroff's theorem above, you will want to consider the restriction of Lebesgue measure to a set E, that is $\lambda_E(A) := \lambda(A \cap E)$.

Question 2

Consider a measure space (X, \mathcal{M}, μ) and a sequence of nonnegative, measurable functions f_n satisfying

 $f_n(x) \searrow f(x)$ for all $x \in X$ and $\int f_1 < +\infty$. $\lim_{n \to +\infty} \int f_n = \int \lim_{n \to +\infty} f_n.$

Prove that

Let $(X_i, \mathcal{M}_i)_{i=1}^3$ be measurable spaces. Prove that $\bigotimes_{i=1}^3 \mathcal{M}_i = (\mathcal{M}_1 \otimes \mathcal{M}_2) \otimes \mathcal{M}_3$.