MATH 201A: PRACTICE MIDTERM 1

(not to be turned in)

Question 1

Fix a measurable space (X, \mathcal{M}) . Given $f, g: X \to \mathbb{R}$ measurable, prove the following:

- (a) f + g is measurable
- (b) f^2 is measurable
- (c) fg is measurable (Hint: how can you express this in terms of squares and reduce to the previous parts?)

Question 2

Suppose μ and ν are finite measures defined on the same measurable space (X, \mathcal{M}) . Prove that there exists a set $N \in \mathcal{M}$ with the following properties:

- (i) $\mu(N) = 0;$
- (ii) if $S \in \mathcal{M}$, $S \subseteq X \setminus N$, and $\mu(S) = 0$, then $\nu(S) = 0$.

Hint: among all sets $N \in \mathcal{M}$ *with* $\mu(N) = 0$ *, choose the one for which* $\nu(N)$ *is largest.*

Question 3

In HW2, Q12, you showed that, given an outer measure μ^* , the collection of μ^* -measurable sets \mathcal{M}_{μ^*} is not necessarily the largest σ -algebra on which μ^* can be restricted to be a measure. In this problem, you will show that, as long as the outer measure of any subset can be approximated by a μ^* -measurable set containing it, then the collection of μ^* measurable sets *is* maximal.

Let X be a nonempty set and suppose μ^* is an outer measure on X. Suppose that, for all $S \subseteq X$ and for all $\epsilon > 0$, there exists a μ^* -measurable set $E \supseteq S$ so that $\mu^*(E) \leq \mu^*(S) + \epsilon$.

- (a) Suppose A is not μ^* -measurable and consider the σ -algebra \mathcal{F} generated by \mathcal{M}_{μ^*} and $\{A\}$. Prove that μ^* is not additive on \mathcal{F} .
- (b) Use part (a) to conclude that \mathcal{M}_{μ^*} is the largest σ -algebra on which μ^* can be restricted to be a measure. (*Hint: this is almost immediate from part (a).*)