Lecture 12 \textbf{Announcements:}

- First wiki articles due this Friday 2/11
- No class Tuesday 2/15, rescheduled to Friday 2/18, 1:30-2:45pm, SH 6635

Recall:

- No class Tuesday 2/15, rescheduled to Friday 2/18, 1:30-2:45pm, SH 6635

Suppose X cpt Polish space.

\textbf{Thm:} For all $\mu, \nu \in \mathcal{P}(X)$, $c : X \times X \rightarrow [0, \infty)$ cts,

$$\inf \{K(\phi) = \sup \int \phi d\mu + \int \psi d\nu \}$$

\text{where} \((\phi, \psi) \in \mathcal{C}(X) \times \mathcal{C}(X) \)

From Kantorovich back to Monge

Furthermore, the maximum is attained.

Questions:

1. When does an OT map $t(x)$ exist?
2. When do the optima of Monge and Kantorovich's problems coincide?
3. When does $t(x) = \nabla \phi(x)$ for ϕ convex?
Thm. (Knott-Smith Optimality Criterion): Fix $X \subseteq \mathbb{R}^d$, $\mu, \nu \in \mathcal{P}(\chi)$. Let $C(x_1, x_2) = |x_1 - x_2|^2$.

(i) There exists $f_\ast \in L^1(\mu)$ proper, lsc, convex s.t.

\[
\inf \left\{ \int f \, d\mu + \int (-f) \, d\nu : f \in C_c(\mathbb{R}^d), f \leq C \right\} = -P_0 = \int |x_1|^2 - 2f_\ast(x) \, d\mu(x) + \int |x_1|^2 - 2f_\ast(x) \, d\nu(x).
\]

(ii) Conversely, if $\gamma \in \mathcal{P}(\mu, \nu)$ and $f \in L^1(\mu)$ proper, lsc, convex for which $x_1 \leq \int f(x) \, d\gamma(x)$ for μ-a.e. (x_1, x_2) then...

\[\text{(ii.a) } \gamma \text{ is optimal} \]
\[\text{(ii.b) } -P_0 = \int |x_1|^2 - f(x) \, d\mu(x) + \int |x_1|^2 - 2f_\ast(x) \, d\nu(x)\]

Remark: More generally, the result continues to hold for $\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d)$, i.e.,

\[\mathcal{P}_2(\mathbb{R}^d) = \{ \mu \in \mathcal{P}_2(\mathbb{R}^d) : \int |x|^2 \, d\mu(x) < \infty \}.\]
Lemma (Double convexification for quadratic cost on \(\mathbb{R}^n \))

Given \(\{(\varphi, \psi)\} \subseteq C(\mathbb{R}^n) \times C(\mathbb{R}^n) \), \(F((\varphi, \psi), 0) < +\infty \)

Define

\[
\tilde{\varphi}(x) = \inf_{x^2 \in \mathbb{R}^n} |x^1 - x^2|^2 - \psi(x^2),
\]

\[
\tilde{\psi}(x^2) = \inf_{x^1 \in \mathbb{R}^n} |x^1 - x^2|^2 - \tilde{\varphi}(x^2).
\]

Then,

1. \(f(x^1) = \frac{1}{2}(|x^1|^2 - \tilde{\varphi}(x^4)) \in L^1(\mu) \) is proper, lsc, and convex
2. \(f^*(x^2) = \frac{1}{2}(|x^2|^2 - \tilde{\psi}(x^2)) \)
3. \(F((\tilde{\varphi}, \tilde{\psi}), 0) \leq F((\varphi, \psi), 0) \)

Remark: \(\tilde{\varphi}_i, \tilde{\psi}_i \) are the Moreau-Yosida regularizations of \(-\psi_i, -\varphi_i \) with respect to the square distance

Proof:

First, note that
\[\Phi(x^2) + \Psi(x^2) \leq |x^1 - x^2|^2 \]
\[\implies \Phi(x^2) \leq |x^1 - x^2|^2 - \Psi(x^2) \]
\[\implies \Phi(x^2) \leq \Phi(x^2) \]

Likewise, note that
\[\Phi(x^2) + \Psi(x^2) \leq |x^1 - x^2|^2 \]
\[\implies \Psi(x^2) \leq |x^1 - x^2|^2 - \Phi(x^2) \]
\[\implies \Psi(x^2) \leq \Psi(x^2) \]

Furthermore,
\[\Phi(x^2) = \inf_{x^2 \in \mathbb{R}^n} \left| x^1 - x^2 \right|^2 - \Psi(x^2) \]

\[\frac{1}{2} \left(|x^2|^2 - \Phi(x^2) \right) = \sup_{x^2 \in \mathbb{R}^n} \left< x_1, x^2 \right> - \frac{1}{2} \left(|x^2|^2 - \Psi(x^2) \right) \]

By defn of convex conjugate,
\[f(x^1) = g^*(x^1) \] is proper, lsc, convex.

Likewise, \(g^*(x^2) = f(x^2) \).

\[\frac{1}{2} \left(1x^2 \right) = \sup \langle x^1, x^2 \rangle = \frac{1}{2} \left(1x^1 \right) \ . \]

To see \(f \in L^2(\mu) \), note that Young's inequality implies

\[g^*(x^2) + g(x^2) \leq \langle x^2, x^2 \rangle \]

Hence, \(g^*(x^2) \leq \langle x^2, x^2 \rangle - \frac{1}{2} (1x^2) \ . \]

OTOH, \(g^*(x^1) = \frac{1}{2} \left(1x^1 \right) \leq \frac{1}{2} (1x^1) \).

Thus, \(f = g^* \in L^2(\mu) \).

Now, we have everything we need to prove the Knott-Smith optimality criterion.
Part (i)

By Kantorovich Duality Thm, \(\exists \phi, \psi_0 \in C(X) \) s.t. \(\phi(x^1) + \psi_0(x^2) \leq |x^1 - x^2|^2 \) with

\[
-P_0 = \int \phi \, d\mu + \int \psi_0 \, d\mu = -F((\phi_0, \psi_0), 0).
\]

By Double Convexification Lemma, \(\exists f \in L^1(\mu) \) proper, lsc, convex where

\[
F((\phi_0, \psi_0), 0) = F((\bar{\phi}, \bar{\psi}), 0)
\]

for

\[
f(x^2) = \frac{1}{2} (|x^2|^2 - \bar{\phi}(x^2))
\]

\[
f^*(x^1) = \frac{1}{2} (|x^1|^2 - \bar{\psi}(x^2)).
\]

Thus if \(\delta^* \) is an OT plan,

\[
P_0 = F((\phi_0, \psi_0), 0)
\]

\[
= F((\bar{\phi}, \bar{\psi}), 0)
\]

\[
= F((|x^1|^2 - 2f(x^1), |x^2|^2 - 2f^*(x^2)), 0)
\]
\[\begin{align*}
&= -\int |x^2| - 2f(x^2) \, d\mu(x^2) - \int |x^2| - 2f^*(x^2) \, d\nu(x^2) \\
&= -\int |x^2| - 2f(x^2) + |x^2| - 2f^*(x^2) \, d\mathcal{E}_\text{y}(x^2, x^2) \\
&\begin{aligned}
\text{Young's} \\
&\geq -\int |x^2| + 1\cdot |x^2| - 2\langle x^2, x^2 \rangle \, d\mathcal{E}_\text{y}(x^2, x^2) \\
&= -\int |x^2 - x^2| \, d\mathcal{E}_\text{y}(x^2, x^2) \\
&= D_0 \\
&= P_0
\end{aligned}
\end{align*} \]

Thus, equality must hold throughout.

Ensures (i.a).

Subtracting eqn below from above,

\[\int f(x^2) + f(x^2) - \langle x^2, x^2 \rangle \, d\mathcal{E}_\text{y}(x^2, x^2) = 0 \]

Since Young's inequality guarantees the integrand is nonnegative, it must vanish \(\mathcal{E}_\text{y} \)-a.e.
Thus \(x^2 \in \partial f(x^4) \) \(\delta^*\)-a.e.

Part (ii)

Suppose
- \(\delta \in \mathcal{M}(\mu, \nu) \)
- \(f \in L^2(\mu) \) proper, lsc, convex
- \(x^2 \in \partial f(x^4) \) \(\delta^*\)-a.e.

WTS

(ii.a) \(\delta \) is optimal

(ii.b) \(P_0 = \int |x|^2 - f(x) \, d\mu(x) + \int |x|^2 - 2f^*(x^2) \, d\nu(x^2) \)

Since equality holds in Young's inequality \(\delta^*\)-a.e.

\[
-\int |x|^2 - 2f(x^2) \, d\mu(x^2) - \int |x|^2 - 2f^*(x^2) \, d\nu(x^2)
\]

\[
= \int |x|^2 - 2f(x^4) + |x^4|^2 - 2f^*(x^2) \, d\delta(x^4, x^2)
\]

\[
= -\int |x|^2 - 2\langle x^4, x^2 \rangle + |x^2|^2 \, d\delta(x^4, x^2)
\]

\[
= -\int |x|^2 - |x^2|^2 \, d\delta(x^4, x^2)
\]
For arbitrary $\gamma \in \Gamma(\mu, \nu)$ we have $\varepsilon^* \gamma$. Thus

\[-\int x_1^2 - x_2^2 \Gamma(x_1, x_2)\]

\[= -\int x_1^2 - 2f(x_1) \mu(x_1) - \int x_2^2 - 2f^*(x_2) \nu(x_2)\]

\[\geq -\int x_1^2 - x_2^2 \Gamma(x_1, x_2)\]

Thus γ is optimal.

Finally, since γ is optimal, which shows (ii.a).

Applying ε^* again shows (ii.a). \square
Now, we have what we need to not only solve the Monge problem, but also to characterize its unique solution.

\[m = \delta_x, \quad v = 1_{[0,1]} \]

Thm (Brenier): Given \(\mu, v \in \mathcal{P}_2(\mathbb{R}^d) \), \(\mu \ll \lambda^d

1. For any optimal transport plan \(\pi \), \(\exists \) an optimal transport map \(t^* \) s.t. \(\pi = (\text{id}_{t^*})^\# \mu \)
 "Any OT plan is induced by an OT map"

2. Given \(t \) s.t. \(t^\# \mu = v \), \(v \) defined everywhere on \(\mathbb{R}^d \)
 \(t \) is optimal \(\iff t = \nabla \phi \) for \(\phi \in L^1(\mu) \) convex, lsc
 \(\phi \) defined \(\mu \)-a.e., differentiable \(\mu \)-a.e.

3. The OT map is unique, up to \(\mu \)-a.e. equi-
 The proof relies strongly on following theorem:

Thm: Given \(\mu \in \mathcal{P}_2(\mathbb{R}^d) \), \(\mu \ll \lambda^d \), \(\phi \in L^1(\mu) \) convex, then
 * \(\phi \) is differentiable \(\mu \)-a.e.
 * where it is differentiable, \(\partial \phi = \{ \nabla \phi \} \)
\[\nabla \Phi \text{ coincides with the distributional gradient.} \]

Sketch of Proof:
- Any convex function is locally Lip on \(\text{Int}(D(\Phi)) \).
- \(D(\Phi) \) is convex, so \(\partial D(\Phi) \) has Lebesgue meas 0.
- Thus \(\Phi \) is differentiable a.e. on \(D(\Phi) \).
- \(\Phi \in L^1(\mu) \implies \mu(D(\Phi)) = 1 \implies \Phi \text{ is differentiable} \) \(\mu \text{-a.e.} \).

Now solve Monge’s problem!