Lecture 5

Recull:

Kantorovich's Optimal Transport Problem Given M, v E P(X), solve

If & attains the minimum, we will call it an <u>optimal transport plan</u>.

Reasons this is a better behaved problem (D Y Mive P(X), the constraint set is nonempty (2) The constraint set is convex. (3) The objective function is convex. (4) Kartorovich's problem has a dual problem.

will discuss soon -----

(5) We can prove a minimizer exists via the Direct Method of the Calculus of Variations. Need a topology in which the constraint set is compact and the objective function is lsc. metrivalle metrizable Del: A sequence un tem(X) is narrowly convergent to utem(X) if $\lim_{x \to \infty} SQdyn = SQdy, \forall QECb(X).$ $Del: K \subseteq P(X)$ is tight if, $\forall \epsilon > 0$, $\exists K_{\epsilon} < c \times X$ s.t. $\mu(X \setminus K_{\epsilon}) \leq \epsilon$ $\forall \mu \in \mathcal{K}$. . complete, separable

Suppose (X,d) is a Polish space.

Thm (Prokhorov): Given a Polish space (X, d) and XEP(X), • X, is relatively compact in parow topology. K is tight.

Cor: If (X,d) is a Polish space, then for any $\mu \in P(X)$, Eugs is tight.

We now have everything we need to prove compactness of the constraint set.

Prop: Given a Polish space (X,d) and $\mu, \forall \in P(X), \Pi(\mu, \nu)$ is relatively compact in the narrow topology.

 $\begin{array}{l} Pf: By corollary, \forall \varepsilon > 0, \exists K_{\varepsilon}^{u}, K_{\varepsilon}^{v} < c \\ s.t. \\ \mu(X \setminus K_{\varepsilon}^{u}) + \nu(X \setminus K_{\varepsilon}^{v}) \leq \varepsilon. \end{array}$

Define KE := KE × KE cc X × X.

Then, for all $\forall \in \Gamma(\mu, v)$

 $\mathcal{X}((X \times X) \setminus K_{\mathcal{E}}) \leq \mathcal{X}((X \setminus K_{\mathcal{E}}) \times X) + \mathcal{X}(X \times (X \setminus K_{\mathcal{E}}))$ $=\mu(X \setminus K_{\varepsilon}) + \nu(X \setminus K_{\varepsilon})$ KE X ≤ €. Thus, $\Gamma(u,v)$ is tight; hence by Prokhorov's theorem, it is compact in the narrow topology. A functional analysis perspective on the proof of Prokhorov's theorem

(X, d) locally compact metric space

Banachspace (Co(X), 11.1100) (Cb(X), 11.1100) Riesz Representation 1 Theorem Dualspace $(\mathcal{M}^{s}(X), ||\cdot||_{TV})$ [big space, containing $(\mathcal{M}(X), ||\cdot||_{TV})$] Weak-* topolgy wide topology narrow topology $\operatorname{Recall}: \mu \in \mathcal{M}^{s}(X) = \mu^{-} \mu^{-} \mu^{-} \text{ for } \mu^{+}, \mu^{-} \in \mathcal{M}(X)$ $\|\mu\|_{TV} = \mu^{+}(X) + \mu^{-}(X)$

Remark: If (X,d) is compact, then all above notions coincide, j.e. Co(X) = Cb(X) =

Exercise: Prove that P(X) is not closed in either the wide or narrow topologies.

Recall: Thm (Banach, Alaoghu, Bourbaki): For any Banach space E, the closed unit ball

 $B_{E^*} = \{f \in E^* : ||f|| \le 1\}$

is compact in the weak-* topology. Broof of Brokhorov: We will show tight => relatively compact in narrow topology.

If K=P(X) is tight, then there exists a sequence KmCCX s.t. u(X\Km) = m, YueR. increasing Consider the restriction of μ to Km: $\mu|_{Km} \in \mathcal{M}(Km),$ defined by $\mu |_{Km} (B) = \mu (B \cap Km).$ Since $\|\mu\|_{Km}\|_{TV} = \mu(Km) \leq 1$, we have $\{\mu\|_{Km} \mid \mu \in \mathcal{K}_{S} \text{ is a subset of the closed}$ unit ball in $(C(Km), \|\cdot\|_{\infty})^{*}$. Thus, B-A-B Theorem ensures that: (i) \exists a sequence $\xi_{\mu_{i}}^{1}\xi_{i=1}^{+\infty}$ s.t. $\mu_{i}^{1}|_{K_{1}}^{1-\gamma} \sqrt{2}\xi_{i}^{1}(k_{1})$ (ii) for each n=2, choose a subjequence Emisi=1 of Eurisi=1 s.t. mil 300 mer((Kn). By construction, for $m \leq n$, we have $M_{i} \mid Km \xrightarrow{i \rightarrow +\infty} \mathcal{M} \in \mathcal{M}(Km).$ Consequently, for any fe(b(x), f=0,

This shows: (i) For any fe(b(x), thinking of vn and vn as cm(x), we have Sfdvn = Sfdvm for all m ≤n. Since all bounded, monotonic sequences converge, Sfdr converges for all fe(b(x), f20

(ii) For any closed set F, the function $f_{\varepsilon}(x) := O(1 - \frac{d(x,F)}{\varepsilon})^{+} \in C_{\varepsilon}(x)$ and $1_{F}(x) \leq f_{\varepsilon}(x) \leq 1_{F_{\varepsilon}(x)}$, for $F_{\varepsilon} = \xi_{x} : d(x,F) < \varepsilon_{\varepsilon}$, so $f_{\varepsilon} \rightarrow 1_{F}$ pointwise and the Dominated Convergence Theorem ensures

 $\mathcal{V}^n(F) \ge \lim_{\epsilon \to 0} \int f_{\epsilon} d\mathcal{V}^n \ge \lim_{\epsilon \to 0} \int f_{\epsilon} d\mathcal{V}^m = \mathcal{V}^m(F).$

(iii) Define $\nabla \mathcal{E}\mathcal{M}(X)$ by $\nabla(F) = \stackrel{SUP}{\mathcal{H}} \mathcal{N}(F)$, which exists by (ii).

(iv) Thus, for all
$$f \in (b(X), t \ge 0)$$

 $u \circ pen$, u

Hence, for all
$$f \in C_b(x)$$
, $f \ge 0$
 $Sfdv = S \vee (\{\chi: f(\chi) > t\})dt$
= $S \vee (\{\chi: f(\chi) > t\})dt$) Dominated
 $If \|_{\infty}$
= $\lim_{n \to \infty} S \vee n(\{\chi: f(\chi) > t\})dt$)
= $\lim_{n \to \infty} Sfdvn$

(ii) By taking positive and negative posts of f, we conclude that Sfdvn-JSfdv for all $f \in (b(X))$

Remaining key ingredient to apply Direct Method of Calculus of Variations: need to show IKp(v) is Isc in narrow topology To determine what happens when un - u narrowly and P is merely Isc... liming SQ dyn = ?? ... we will show that any lower semicontinuous function bacy be approximated from below by cts fns. Lemma: Suppose $q: X \rightarrow \mathbb{R} \cup \{+\infty\}\)$ is lsc and bounded below. Then $\exists \{g_{k}\}_{k=1}^{k=1} \in (blx)$ s.t. $\lim_{k \to +\infty} g_{k}(x) \nearrow g(x) \lor x \in X$.

Del: A function q:X->RUE+23 is proper if I x s.t. g/2e) <+20.

el of Lemma: Trivially true if g=too, so be may assume g is proper. Let gx(x) be the Moreau-Hosida regularization of g(x). (1) gr(x) is continuous Suppose xn x. for fixed 1 y e X limsup gk(xn) = limsup g(y) + kd(xn,y) = alc