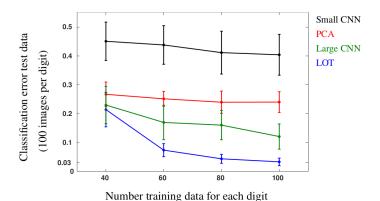

## Relevance in Experimental Setting

Classification model

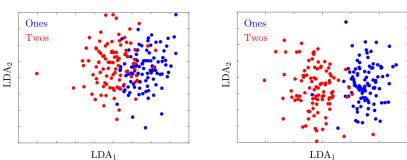
$$f(h_{\#}\mu) = f(\mu) \text{ for } h \in \mathcal{G}_{\varepsilon,R}$$


- Hyperplane classifier  $f_{\theta}$  between  $\mathcal{H} \star \mu$  and  $\mathcal{H} \star \nu$ 
  - Sample σ to project T<sup>μ</sup><sub>σ</sub> to T<sup>X</sup><sub>Z</sub>
    Reduce dimension through:
    - PCA if data on shared computer
    - PCA il data on shared computer
    - JL-embedding if data on distributed computers
- Note: Equivalent approximation results for deterministic Voronoi cells (Hamm, Khurana 2024)



## Experimental Validation (shifts and scalings)

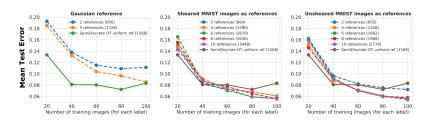
Modified MNIST Classification Between 1's and 2's


- Data sampled from MNIST images
- Each image additionally augmented by random shift and scaling
- Sample *k* labeled examples of each class for training
- $\bullet$   $\sigma$  is centered normal distribution



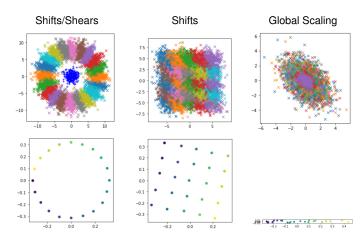
# Experimental Validation (shifts and scalings)

LDA embedding of test data






#### Experimental Validation (shearing)


Modified MNIST Classification Between 7's and 9's





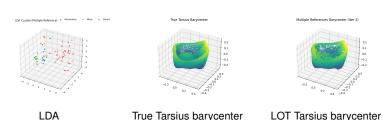
## **PCA** Embedding

- $supp(\mu_k) \subset \mathbb{R}^2$
- ullet made up of almost compatible transformations



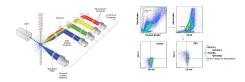
#### Analysis of Lemuridae Teeth

Scans of teeth of different species of lemur

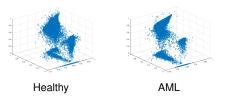

- 3D point clouds, oriented correctly, no point-to-point registration
- Classic ML questions: classification, clustering, data generation
- 4 classes, 5-12 examples per class
- Reference of either Gaussian or multi-reference of LOT barycenters for each class (only calculated on training set)

Classification: Linear SVM: 100% accuracy on test set

**Dimension Reduction:** LDA (multi-reference)


**Data Generation:** Random barycenters per class  $\approx$  1% relative error to true barycenter (multi-reference)

Approximately 1000× faster




# Flow Cytometry - Preliminary Results

Flow cytometry: each patient is represented by 9D point cloud of cells



- Used to tell if people have blood disease
  - Medical test is to look at every 2D slice



## Flow Cytometry Distributions

- Detecting AML:  $n_{sick} = 43$ ,  $n_{healthy} = 315$
- Comparison to Deep Set
- Binary cross-entropy loss
- $\bullet$  Easy to do bagging / resampling of  $\sigma$  to build ensemble classifier

|           | DeepSets | DS Bagging | LOT Classifier | LOT Ensemble |
|-----------|----------|------------|----------------|--------------|
| precision | 0.17     | 0.23       | 0.67           | 0.67         |
| recall    | 0.33     | 0.44       | 0.44           | 0.67         |
| accuracy  | 0.84     | 0.86       | 0.95           | 0.96         |

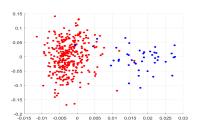
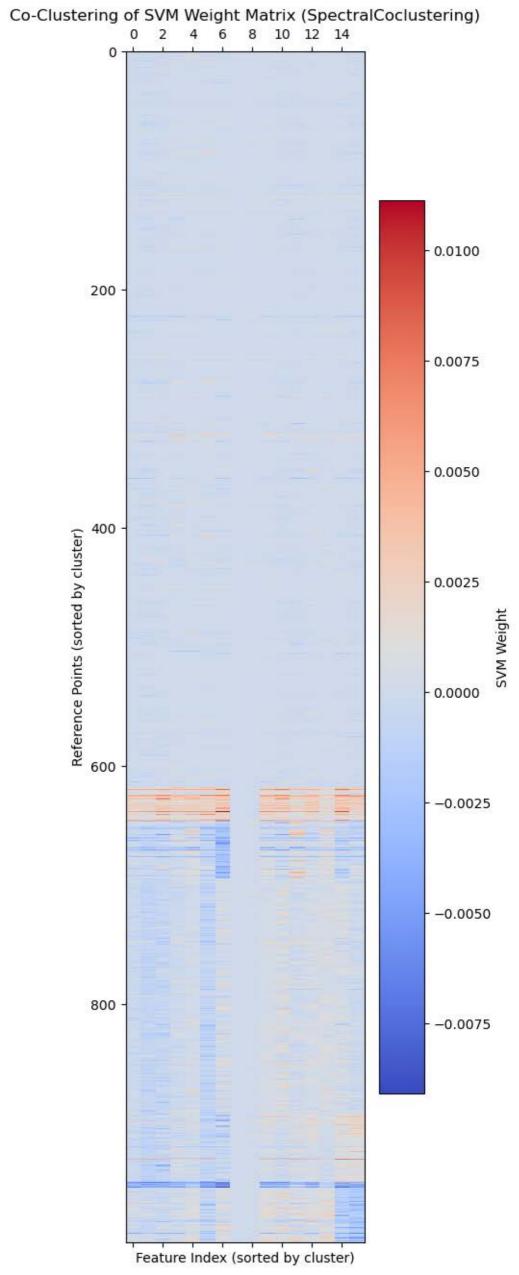




Figure: LDA Embedding



## Shameless Plug for Conference



- What: Stand-alone conference at UCSD
- When: December 1-2, 2025 (just before NeurlPS in San Diego)
- Includes:
  - Paper submission / review / proceedings in PMLR
  - Keynotes / talks / parallel sessions
  - Posters / student presentations
- Workshop Website:

https://www.tagds.com/events/tag-ds-2025