Reminders Lecture 18 · Solutions for 2-3 exercises · Revise article by March 7th · Thursday lecture begins 9:45am Recall: · Makeup Lecture, Friday, March 14, 9:30-10:45am SH6635

Now, we show that all reasonably regular curves in (P2(R°), W2) solve (CE).

What is meant by "reasonably regular"?

Suppose (X, d) is a complete metric space.

Del: Fix p^{21} , $0 \le a \le b$. Then $\chi(a,b) \rightarrow \chi$ is p-absolutely continuous, denoted $\chi(ACP(a,b;\chi))$, if $\exists g \in L^{P}((a,b)) s, t$. $d(x(t), x(s)) \in S_q(r)dr, \forall a \leq s \leq t \leq b.$ Def: The metric derivative of x:(a,b)-> X is $|\chi'||_{t} := \lim_{h \to 0} \frac{d(\chi(t+h), \chi(t))}{h}$

To do this, a key quantity will be the kinetic energy of such a curve. CUTVE.

(Spoiler: kinetic energy will be metric clerivative.)

Exercise 35: $g_{g}(s,y) := \chi_{\xi s + \frac{1}{2}|y|^{2} \le 0}(s,y)$ Satisfies $g_B^* = f_B$ and $f_B^* = g_B$.

Brop: Given MEM(Rd), mEMs(Rd) define Blu, m):= sup {Sfdu + Sgodm}. fr(b(R;R), ge(b(R^d, R^d)) Kinetic f+=2/g12 ≤ 0 Then B(um) is convex and Isc wit nation conv.

Now: properties of B and Why we call it kinetic energy. (#) Brop: (i) $\mathbb{B}(\mu,m) = \sup \{ \{Sfd\mu + Sg^{\bullet}dm\} \}$ $f \in L^{\infty}(\mathbb{R};\mathbb{R}), g \in L^{\infty}(\mathbb{R}^{d},\mathbb{R}^{d})$ $f + \frac{1}{2}|g|^{2} \leq 0$ (ii) Suppose $\mu, m^{<<}\omega$, where wisa o-finite Borel measure on \mathbb{R}^d . Then Blum)=SfB(dw,dw)dw $p(\mu,m) = (\frac{1}{2}) v(\partial \mu)$ (if $m < \mu$) $dm = v d\mu$ $(+\infty)$ otherwise $|iiii) B[\mu,m] = (\frac{1}{2} \int |v|^2 d\mu$

Our proof leverages the following classical result, Rockafellar "Integrals which are Convex Functions.]] +] = [Thm: Given a σ -finite Borel measure ω on \mathbb{R}^d , $p^2 1$, and $F:\mathbb{R}^d \to \mathbb{R} \cup \xi + \infty^3$ proper, convex, lsc, if F(f) is integrable for some $f \in \mathbb{P}(\omega)$ and $F^*(q)$ is integrable for some $q \in L^p(w)$ then $\mathcal{F}: \mathbb{P}[\omega) \rightarrow \mathbb{R} \cup \{+\infty\}, \mathcal{F}(f) := \mathcal{F}(f) d\omega$ L: L^P(ω)→Ruξ+∞3, L(g)=JF*(g)dω are well-defined, proper, convex functions and L= F, F=21.

Pf of Prop: First, we will show (i). By def, $B(u,m) \leq (H)$. It remains to show the opposite inequality.

Note-that (He)=sup sup EJZdut Sg. dmg nEIN gEL[∞](R^d; R^d) NgIIss=n

For any an EL* (Rd, Rd), llgnlls = n... Lusin's the quarantees that, YE>O, J En, E CC/Rd S.t. $(\mu + |m|)(E_{m,\epsilon}) \leq \frac{\varepsilon}{m^2}$ and $q_m|_{E_{m,\epsilon}}$ is ds. Tietre extension quarantees $\exists q_{m,\epsilon} \in (b(|\mathbb{R}^d, |\mathbb{R}^d) \text{ s.t. } \|q_{m,\epsilon}\|_{\infty} \leq \|q_m\|_{\infty}$ and $q_{m,\epsilon} \equiv q_m \text{ on } E_{m,\epsilon}$.

Thus -<u>Slanl</u>²du + San dm

 $= -\int \frac{|g_{n,\varepsilon}|^2}{2} d\mu + \int g_{n,\varepsilon} \cdot dm$ $\leq 2\varepsilon$ $+(\mu+ImD(En,\epsilon)(n^2+2n))$

Therefore, $SUP - \int \frac{|a|^2}{2} d\mu + Sg \cdot dm$ $G \in L^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$ Mall = nE>O arbitrary, sendezd = sup-j_zdut Sg. dm t2e ge(b(IRd; IRd) Igllos=n Taking sup over nell gives (ff) = B(µ,m).

Thus, Rockafellar's Thmensures

 $B(\mu,m) = \sup \{ \{Sfd \mu + Sg^{\bullet}dm \} \}.$ $f \in L^{\infty}(IR; IR), g \in L^{\infty}(IR^{d}, IR^{d})$ $f + \frac{1}{2}|g|^{2} \leq 0$ = $\sup \{f_{dw} + g_{dw}, dm\}dw \}$ $f_{EL}(R;R), g_{EL}(R^{d}, R^{d})$ $f_{+\frac{1}{2}}[g]^{2} \leq 0 \quad w-a.e. \quad g(f,g)$ = SUP SS(Fdw + q. dm) dw - SgB(f,g)dw fe Lw(IR; R), ge Lw(Rd, Rd) $= \mathcal{L}^{\ast}(\frac{d\mu}{dw}, \frac{dm}{dw})$ $= \mathcal{F}_{1}\left(\frac{d\mu}{dw}, \frac{dm}{dw}\right)$ $= \mathcal{F}_{1}\left(\frac{d\mu}{dw}, \frac{dm}{dw}\right) dw$

Finally, we show part (iii). dm=vdµ If m<<, then applying part (ii) with w= u gives $B(\mu,m) = Sf_B(1,v)d\mu = \frac{1}{2}Sv^2d\mu$ OTO H, if $m \leq \mu$, then $\exists A \in B(\mathbb{R})$ s.t. $\mu(A) = 0$ but $m(A) \neq 0$. Define $f_n := -\frac{m^2}{2} \frac{1}{A}$, $g_n := n \frac{m(A)}{m(A)} \frac{1}{A}$ then $f_n + \frac{1}{2} |g_n|^2 = 0$, so they satisfy constraints in defined B and = 0 = $n \ln(A)$ B(µ,m)≥sup Sfndµ + Sgn°dm = +∞. []

Theorem (characterization of AC^2 curves and solns of (CE)) (i) Suppose $\mu \in AC^2(0,T; P_2(\mathbb{R}^{Q}))$. Then $\exists \forall s.t. (\mu, \nu)$ solve ((E) and $|\int |\psi(x,t)|^2 d\mu_t(x))^{1/2} \leq |\mu||(t)$, a.e. t \mathbb{R}^{Q} (ii) Suppose (u,v) solve ((E) and $SShr(x,t) |^2 d\mu_t(x) dt < +\infty$ Then $\mu \in A(2(0,T; P_2(\mathbb{R}^d)))$ and $|\mu||(t) \leq (\int h_{T}(x,t))^2 d\mu_t(x))^{1/2}, a.e.t.$ Rd Rmx: If the result holds for T=1, then, by reparametrizing in time, it holds for all T>0.

Our proof of (i) relies on a lemma: Lemma: Given Emrskern EMG(X) on a Polish space X satisfying SUP IMK (X) <+ 00 · Elmilskein is tight then {mk}ken is narrowly relatively compact. H: Exercise 36.

Pf of Thm: We begin with (i). Fix uEA(2(0,T;P2(Rd)). For KEIN, consider the "discrete time" sequence

Mo/K, MI/K, ···, Mi/K, ···, MK/K

By prev prop, for all i=0,...,k-1 there exists a geo $\mu_i^{k}(t)$ from Mi/k to $\mu_{i+1/k}$ and I velocity

Viks.t. (ui, vi) solve (CE) and

 $\left(\int |v_i^k(x,t)|^2 d\mu_{i,t}^k(x)\right)^{1/2} = W_2(\mu_{i/k},\mu_{i+k})$

 $\forall \pm \epsilon[0, 1].$

Now, chain these geodesics together, defining $\mu^{k}(t) := \mu_{i}^{k}(tk-i) \text{ for } t \in [1/k, 1/k]$ $\nu^{k}(t) := \nu_{i}^{k}(tk-i) \cdot k$ Furthermore for $f \in (i/k, i+1/k)$ $Shr^{k}(x,t) = k^{2} W^{2}(\mu_{1/k}, \mu_{1+1/k})$ i+1/k $\leq \left(\frac{k \int |\mu'|(s)ds}{\frac{i}{k}}\right)^{2}$ $\leq \left(\frac{k \int |\mu'|(s)ds}{\frac{i}{k}}\right)$ $\leq k \int |\mu'|(s)ds$ $\frac{i}{k}$ Thus, for all kEIN, s S lvk(x,t)lduk(x)dt <+00 Rd • $\forall P \in (\mathcal{C}(\mathbb{R}^d), t \mapsto S P d \mu_t^k)$ is abs cfs \mathbb{R}^d

· dtuk + V·(ukvk)=0 holds m weak sense

Next time: identify a limit of My as k->+ as; show that limit satisfies ((E); show that limit coincides w/ original curve p.

