











































































Math 260 R Optimal Transport
Prof Katy CraigNo office hours on Friday
Recall

optimal transportproblem

X dx Y dyl metric spaces
B x Borel o algebra
M x finite Borel measures on X

P X Borel probability measures ont

source measure target measure
MEPIX DEPLY

For BEB X amountofdirt in region is u is



Q How can we rearrange
the dirt in

µ
to look like v in the most efficient way
If measures have densities wrt Lebesgue
can draw pictures

dulx fix dx x duly glydly
pileof dirt 88

11Th May

Whatdoes it mean to rearrange one

probability measure to look like another

Def transport map Given meP X 0 EPCY
and a measurable function tix Y we

say t tansport
v if

V B µ
t B BEBLY



We call w the push forward ofMundtwritte M and
we call t a transportmapfrom
IV

Informally mass starting atlocation to in µ is sent to tho
in v1 See Exercise 1

Ex translation dilation

Suppose X dx Y d x R 1 1
Fix as 0 belR and let tix axtb

Thus for
any me

P Rd the satistie

a B ME B µ BI



ᵗ

Ability EE hit
t B B

t x 2 1

Lemma equivcharacterization oftranspmap
Given MEP X and t X Y measurable

t µ V 59 1 1duk 59 g duly
9170

Pf Exercise 2



Lemma change of variables formula
suppose
felt xd f 0 Sfdxd 1
µ is given by dulx f xld7
te Rd Rd is injective and satisfies
Idet Dt x 0 XER

Then v t u satisfies duly glyiddly
where

gly s otly if yet Rd

if
y

t Rd

Pf Exercise 3

Cor Under the hypotheses of the
previous lemma if aso berd and

th axtb

then gly 19



Application Imaging Flows
Reference Kobyzer Prince Brubaker 121

e g life is a uniform prob measure on some region
him is a Gaussian

normalizing
Problems Given a reference measure MEPA
about which we know everything and
given a target measure ve PLY
from which we have samples yifind t X Y nice so that
t V

satisfyinghypotheses
rearrangingflowing ofchange of variables
µ to v lemma

What does it mean to have samples



Suppose X 4 are Polish spaces
complete Earablemetricspaces

Def Cb X 9 X IR 9 is bad cts

Def narrow convergence Given

mn nEP X and MEP X we
sayun µ narrowly if

his 9 x dun x 91 1dull 9 blx

Lemme Narrow convergence is
metrizable

Pf Exercise 4

YIEgnaspffyi.si
EY

netNiartE

8y u narrowly



Rmt The previous definition is
equivalent to

Lms tEfly 591ydduty GeCb Y
Y

Motivation for Problem
Trawnew samples from u fat least

approximately
If xj jE are samplesofn andt X Y is continuous then
t xjBj are samples of t uExercise 5

In the setting of the change of var
lemma Find the valueof thedensityofv w r t Lebesgue at arbitraryyEY



Example Fashion MNIST
70,000 28 28 grey scale fashion images

Consider imagesof shoes as samples

yi if
11228 28 as samples ofsome unknown measure WE PARK

For
any

BEB 11228 28

B proportion ofshoe images in B



Drawing new samples from V

generating
new candidate

images of shoes

Finding the value of the densityof V at some ye
11228 28

finding relative confidence
that

y
is a picture ofa shoe

Challengesi solving IProblem

badlyunderspecified there can

exist many
nice t s.tt u V

TTM

net



need to ensure t u v based

only on knowledge of yi i

Nazing Approach
Require to belong to a parametric class

of functions That are convenient to

compute invert and calculate
Jacobian determinant

e g F t Rd IRM t Axtb
for AEMmyd R
berm

see Kobyzer et al
d m

maybe even F V9 9 Rd R
convex

these are optimal transport
maps in some sense



Do w how similar v is to w

generalizationof idea of metric
Given a statistical divergence that isD PLY PLY of N sit Df wk0
war want to solve

min Dfult er
tet

oo but in practice approximate
Dfult e Dn h E8yi t µ
and solve

ping Dr 1h
EnSyi t ul



Most important example

If dulyglyldxmlyl.dwlythlyldmyDlulwl.KZ
olw flog y duty

loglglyidulylfloychlylldulyl.TT
Dntn EnSgi a Cut loghly

Thus if w t u solving
is

equivalent to finding
t so that

d t allyl hlyld7mlyl makesn

E loychlyillhtlkhhg.IQ
as large as possible



Throughout the course we'll see
manyoptimization problems of this formobjective function

min Flt
te G constraint set

mental image Flt
l

Monge's Optimal TransportProblem
Given µ VEP X solve effort
min Seixastix measurable
t u V



Unfortunately Monge's problem is a

horrible optimization problem

Sudakov 1979 Ambrosio and Pratelli 2001
Evans and Gangbo 1999



Reasons the Monge Problem is difficult

Difficulty 1 the constraint set can be empty
That is given u.VE PM there doesn't

necessarily exist ts.tt M V

Forexample by Exercise 1 we see that
if µ is countably supported andt M V then u must be countably
supported

Heuristically the problem is that a transport
map t sends all mass starting at a
location to tho In particular
mass cannot split

Two potential solutions to emptyconstraint set
a don't allow source measure to
concentrate mass on small sets likepoints

b instead of consideringtransport mapsconsider transport plans
Next Time



Difficulty 2 Solutions may not
be unique

ExerciseG.to u 0andtitu v so both
to and ti

belong to the constraint set

and both transport maps require the
same amount of effort
Fact will show later to and t are both
optimal transport maps



Potential solution to non uniquenessofoptima

Difficulty 3 The constraint set is nonconvex



Generally in optimization we want our

constraint set C to be convex since
our normal strategy is

to take an

initial guess perturb it and see if the
objective function decreases

t

x


