






Q: format of exercises/solutions?




































































Lecture 3

Recall

Application Imaging Flows
Reference Kobyzer Prince Brubaker 121

e g lies is a uniform prob measure on some region
him is a Gaussian

normalizing
Problems Given a reference measure MEPA
about which we know everything and
given a target measure ve PLY
from which we have samples yifind t X Y nice so that
t Y

V

satisfyinghypotheses
rearrangingflowing ofchange of variables
µ to v lemma



Suppose X 4 are Polish spaces
complete starablemetric spaces

Def Cb X 9 X IR 9 is bad cts

Def narrow convergence Given

msn.FR x andMEP X we
sayun µ narrowly if

his 59 x dun x 91 1dull 9 blx

Lemma Narrow convergence is
metrizable
Pf Exercise 4

YIItigasyfyi.si
EY neiN are

Efy u narrowly



Rmt The previous definition is
equivalent to

Lms tEfly 591ydduty GeCb Y
Y

Motivation for Problem
Trawnew samples from u fat least

approximately
If xj jE are samplesofn andt X Y is continuous then
t xjBj are samples of t uExercise 5

In the setting of the change of var
lemma Find the valueof thedensityofv w r t Lebesgue at arbitraryyEY



Example Fashion MNIST
70,000 28 28 grey scale fashion images

Consider imagesof shoes as samples

yi if
11228 28 as samples ofsome unknown measure WE PARK

For
any

BEB 11228 28

B proportion ofshoe images in B



Drawing new samples from V

generating
new candidate

images of shoes

Finding the value of the densityof V at some ye
11228 28

finding relative confidence
that

y
is a picture ofa shoe

Challengesi solving IProblem

badlyunderspecified there can

exist many
nice t s.tt u V

ITA

not



need to ensure t u v based

only on knowledge of yi i

Namalizing Approach
Require to belong to a parametric class

of functions That are convenient to

compute invert and calculate
Jacobian determinant

e g F t Rd IRM t Axtb
for AEMmyd R
berm

see Kobyzer et al
d m

maybe even F V9 9 Rd R
convex

these are optimal transport
maps in some sense



Dow how similar v is to w

generalizationof idea of metric
Given a statistical divergence that isD PLY PLY of N sit Df wk0
war want to solve

min Dfult er
tet

oo but in practice approximate
Dfult e Dn in E8yi t µ
and solve

ping Dr 1h ErSyi
t ul



Most important example

If dulyglyldxmlyl.dwlythlyldmyDlulwl.KZ
olw flog y duty

loglglyidulylfloychlylldulyl.TT
Dntn EnSgi a Cut loghly

Thus if w t u solving
is

equivalent to finding
t so that

d t allyl hlyld7mlyl makesn

E loychlyillhtlkhhg.IQ
as large as possible



Throughout the course we'll see
manyoptimization problems of this formobjective function

min Flt
te G constraint set

mental image Flt
l

Monge's Optimal TransportProblem
Given µ VEP X solve effort
min Seixastix measurable
t u V



Unfortunately Monge's problem is a

horrible optimization problem

Sudakov 1979 Ambrosio and Pratelli 2001
Evans and Gangbo 1999



Reasons the Monge Problem is difficult

Difficulty 1 the constraint set can be empty
That is given µ VE PM there doesn't

necessarily exist ts.tt M V

Forexample by Exercise 1 we see that
if µ is countably supported andt M V then u must be countably
supported

Heuristically the problem is that a transport
map t sends all mass starting at a
location to tho In particular
mass cannot split

Two potential solutions to emptyconstraint set
a don't allow source measure to
concentrate mass on small sets likepoints

b instead of consideringtransport mapsconsider transport slans

ooo next file






































































































































Difficulty 2 Solutions may not
be unique

That is given u.ve P X there

may exist multiple
distinct

optimal transport maps
Ex books on a shelf

a

1 1

f I
1

d IcopaldXxl V

consider to x x shift all right








































































tilxlfxtlifxelo.atotherwise first

Exercise 6 Show to t are both

transp maps from µ to v that

require same amt of effort
Fact will prove late In fact
both are optimal transport
maps
Potential solution to nonunigueness
of optim.am tyntinyeffort to make obj for strictlyconvex or



Marge's original p Wasserstein
problem on IR

p 1

minsltlxt xldulxtM.infosItIx xPdulxtit MV

r

TT
multiple optima Ygtimum
convex strictlyconvex

Remixing facts

EX is convey if xax.ec
Xa 1 dxotxx.EC αE 0,1

f IRU to is



convex if f x 1 a flxoltaff

EE gcone

forallxo x EC αE 0,1

If f is convex and concave it
is affineline



Difficulty 3 The constraint set is nonconvex

Generally in optimization we want our

constraint set C to be convex since

our normal strategy is
to take an

initial guess perturb it and see if the

objective function decreases

t

x

Ffg's

problem linear
perturbations of t t M v

kick us out ofthe constraint set



Solution consider transportplans

Fow can we get around
the difficulties

of Monge's problemRelax the problem
Leonid Kantorovich 1942

On the translocation of masses

Notation

Projectionmaps
Tx X Y X

Heyl x

Ny Xx Y Y
Mylxigky



A EBIX

Marginal For JEPIX Y define
first marginal Tx 8 A 8MAY8CAXY

sedmarginal TY 8

Deftransport plan Given MEP x
and we PCY the setof transport
plans from u to vis

Mun JEP XY Tx 8 u Ty 8 3
We will use transport plans as a new

way to model
rearranging mass in µ to

look like v For AEB X BEBLY
8 A B amt of mass from MCA

that is sent to B














