MATH CS 117: HOMEWORK 1

Due Sunday, April 7th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1^*

DEFINITION 1 (composition). Given $g: X \to Y$ and $f: Y \to Z$, the composition $f \circ g: X \to Z$ is the function defined by $f \circ g(x) = f(g(x))$ for all $x \in X$.

- (a) Suppose g and f are one-to-one functions. Prove that $f \circ g$ is a one-to-one function and $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.
- (b) Suppose g and f are onto functions. Prove that $f \circ g$ is an onto function.
- (c) Suppose $A \subseteq Z$. Prove that $(f \circ g)^{-1}(A) = g^{-1}(f^{-1}(A))$.

Question 2

Given $f: X \to Y$, prove that f is a one-to-one function iff $f(A \cap B) = f(A) \cap f(B) \ \forall A, B \subseteq X$.

Question 3*

Suppose F is an ordered field and $x \in F$. Prove the following facts:

- (a) $x \cdot 0 = 0$
- (b) -(-x) = x
- (c) (-1)x = -x

Question 4*

In the definition of a field, suppose that the condition $1 \neq 0$ in item M4 was removed. Prove that, if F is a field for which 1 = 0, then $F = \{0\}$.

Question 5

Suppose F is an ordered field and $x, y, \epsilon \in F$.

- (a) If xy > 0, prove that either x > 0 and y > 0 or x < 0 and y < 0.
- (b) If xy > 0 and x < y, prove that 1/y < 1/x.
- (c) Prove that $x^2 > 0$ for all $x \neq 0$.
- (d) Prove that $x^2 + y^2 \ge 2xy$.
- (e) If $x \leq y + \epsilon$ for all $\epsilon > 0$, prove that $x \leq y$.

Question 6*

Consider the Gaussian rational field $\mathbb{Q}(i)$, defined to be the set

$$\mathbb{Q}(i) = \{ p + qi : p, q \in \mathbb{Q} \},\$$

where *i* denotes an element satisfying $i^2 = -1$. As the name implies, the Gaussian rational field is a field, endowed with the following addition and multiplication operations:

 $(p+qi) + (p'+q'i) = (p+p') + (q+q')i, \quad (p+qi) \cdot (p'+q'i) = (pp'-qq') + (pq'+qp')i.$

The additive identity is 0 = 0 + 0i and the multiplicative identity is 1 = 1 + 0i.

We may endow the Gaussian rational field with the *lexicographical ordering* given by

$$p + qi \le p' + q'i \iff$$
 either (i) $p < p'$ or (ii) $p = p'$ and $q \le q'$.

(This is sometimes known as the *dictionary ordering*, since it follows the same principle by which one puts a list of words in alphabetical order.)

- (a) For any $x, y \in \mathbb{Q}(i)$ prove that exactly one of the following is true: x < y, x = y or x > y.
- (b) For any $x, y, z \in \mathbb{Q}(i)$, if x > y and y > z, prove that x > z.
- (c) Even though $\mathbb{Q}(i)$ is a field and can be endowed with an ordering as described above, it is *not* an ordered field. Which part of the definition of an ordered field is violated? Justify your answer.