Math CS 117: Homework 1

Due Sunday, April 7th at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1*

DEFINITION 1 (composition). Given $g: X \rightarrow Y$ and $f: Y \rightarrow Z$, the composition $f \circ g: X \rightarrow Z$ is the function defined by $f \circ g(x)=f(g(x))$ for all $x \in X$.
(a) Suppose g and f are one-to-one functions. Prove that $f \circ g$ is a one-to-one function and $(f \circ g)^{-1}=g^{-1} \circ f^{-1}$.
(b) Suppose g and f are onto functions. Prove that $f \circ g$ is an onto function.
(c) Suppose $A \subseteq Z$. Prove that $(f \circ g)^{-1}(A)=g^{-1}\left(f^{-1}(A)\right)$.

Question 2

Given $f: X \rightarrow Y$, prove that f is a one-to-one function iff $f(A \cap B)=f(A) \cap f(B) \forall A, B \subseteq X$.

Question 3*

Suppose F is an ordered field and $x \in F$. Prove the following facts:
(a) $x \cdot 0=0$
(b) $-(-x)=x$
(c) $(-1) x=-x$

Question 4*

In the definition of a field, suppose that the condition $1 \neq 0$ in item M4 was removed. Prove that, if F is a field for which $1=0$, then $F=\{0\}$.

Question 5

Suppose F is an ordered field and $x, y, \epsilon \in F$.
(a) If $x y>0$, prove that either $x>0$ and $y>0$ or $x<0$ and $y<0$.
(b) If $x y>0$ and $x<y$, prove that $1 / y<1 / x$.
(c) Prove that $x^{2}>0$ for all $x \neq 0$.
(d) Prove that $x^{2}+y^{2} \geq 2 x y$.
(e) If $x \leq y+\epsilon$ for all $\epsilon>0$, prove that $x \leq y$.

Consider the Gaussian rational field $\mathbb{Q}(i)$, defined to be the set

$$
\mathbb{Q}(i)=\{p+q i: p, q \in \mathbb{Q}\},
$$

where i denotes an element satisfying $i^{2}=-1$. As the name implies, the Gaussian rational field is a field, endowed with the following addition and multiplication operations:

$$
(p+q i)+\left(p^{\prime}+q^{\prime} i\right)=\left(p+p^{\prime}\right)+\left(q+q^{\prime}\right) i, \quad(p+q i) \cdot\left(p^{\prime}+q^{\prime} i\right)=\left(p p^{\prime}-q q^{\prime}\right)+\left(p q^{\prime}+q p^{\prime}\right) i .
$$

The additive identity is $0=0+0 i$ and the multiplicative identity is $1=1+0 i$.

We may endow the Gaussian rational field with the lexicographical ordering given by

$$
p+q i \leq p^{\prime}+q^{\prime} i \Longleftrightarrow \text { either (i) } p<p^{\prime} \text { or (ii) } p=p^{\prime} \text { and } q \leq q^{\prime}
$$

(This is sometimes known as the dictionary ordering, since it follows the same principle by which one puts a list of words in alphabetical order.)
(a) For any $x, y \in \mathbb{Q}(i)$ prove that exactly one of the following is true: $x<y, x=y$ or $x>y$.
(b) For any $x, y, z \in \mathbb{Q}(i)$, if $x>y$ and $y>z$, prove that $x>z$.
(c) Even though $\mathbb{Q}(i)$ is a field and can be endowed with an ordering as described above, it is not an ordered field. Which part of the definition of an ordered field is violated? Justify your answer.

