Math 117: Homework 2

Due Sunday, April 14th at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1*

Consider an ordered field F and suppose $S \subseteq F$ is nonempty and bounded above. Prove that a is the supremum of S if and only if a is an upper bound for S and, for all $\epsilon>0$, there exists $s \in S$ so that $s>a-\epsilon$.

Question 2*

Consider an ordered field F and a nonempty subset $X \subseteq F$
DEFINITION 1 (maximum/minimum). An element $a \in F$ is the maximum of X if $a \in X$ and a is an upper bound for X. Similarly, b is the minimum of X if $b \in X$ and b is a lower bound of X.
(a) If the maximum of X exists, prove that the maximum is the supremum of X.
(b) If $\sup X \in X$, prove that $\max (X)=\sup (X)$.

Question 3*

Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above.
(a) If $A \subset B$, prove that $\sup A \leq \sup B$.
(b) For any A and B, prove that $\sup (A \cup B)=\max \{\sup A, \sup B\}$.

Question 4

Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above. Define $A+B=\{a+b: a \in$ A and $b \in B\}$. Prove $\sup (A+B)=\sup A+\sup B$.

Question 5*

Consider the following proposition:
PROPOSITION 1. Every nonempty subset S of \mathbb{R} that is bounded below has an infimum.
This question will lead you through the proof of the proposition.
(a) Suppose S is as in the proposition above. Define the set $-S=\{-s: s \in S\}$. Show that $-S$ is bounded above.
(b) Use the definition of \mathbb{R} to prove that $-S$ has a supremum, $\sup (-S)$.
(c) Prove that $-\sup (-S)$ is the infimum of S.

Solve question 6.5 from the textbook.

Question 7

Suppose $X \subseteq \mathbb{N}$ is nonempty and bounded above. Prove that $\max (X)$ exists.

Question 8*

Solve question 7.9 in the textbook. This shows our definition of \mathbb{R} specifies \mathbb{R} up to isomorphism.

Question 9

Prove that a set X is infinite if and only if X has the same cardinality as a proper subset of itself.

Question 10*

The extended real numbers is the set $\overline{\mathbb{R}}:=\{-\infty\} \cup \mathbb{R} \cup\{+\infty\}$. We may extend the binary operations of addition + and multiplication \cdot and the ordering \leq from \mathbb{R} to $\overline{\mathbb{R}}$ via the following rules:
(a) $\pm \infty+x= \pm \infty$ for all $x \in \mathbb{R}$.
$+\infty+(+\infty)=+\infty$ and $-\infty+(-\infty)=-\infty$.
$\pm \infty+(\mp \infty)$ is not defined.
(b) $\pm \infty \cdot x= \pm \infty$ for $x \in(0,+\infty]$ and $\pm \infty \cdot x=\mp \infty$ for $x \in[-\infty, 0)$.
$(\pm \infty) \cdot(\pm \infty)=+\infty$ and $(\pm \infty) \cdot(\mp \infty)=-\infty$.
$\pm \infty \cdot x$ is not defined for $x=0$.
(c) $-\infty<x<+\infty$ for all $x \in \mathbb{R}$.

We now recall the definition of convex and non-decreasing functions.
DEFINITION 2. A function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex if

$$
f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y), \text { for all } \alpha \in[0,1] .
$$

DEFINITION 3. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is non-decreasing if

$$
x \leq y \Longrightarrow f(x) \leq f(y) .
$$

Using these definitions, we will now establish a few basic properties of convex functions.
(i) Suppose f is a convex function satisfying $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$. Is $-f$ a convex function? Justify your answer.
(ii) Suppose f and g are convex functions and $c_{1}, c_{2} \in \mathbb{R}$. Under what conditions on c_{1} and c_{2} is $c_{1} f(x)+c_{2} g(x)$ always a convex function?
(iii) Suppose f is convex and g is convex and increasing. Is $g \circ f$ convex? Is $f \circ g$ convex? Justify your answer.

