MATH 117: Homework 2

Due Sunday, April 14th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1^*

Consider an ordered field F and suppose $S \subseteq F$ is nonempty and bounded above. Prove that a is the supremum of S if and only if a is an upper bound for S and, for all $\epsilon > 0$, there exists $s \in S$ so that $s > a - \epsilon$.

Question 2*

Consider an ordered field F and a nonempty subset $X \subseteq F$

DEFINITION 1 (maximum/minimum). An element $a \in F$ is the maximum of X if $a \in X$ and a is an upper bound for X. Similarly, b is the minimum of X if $b \in X$ and b is a lower bound of X.

- (a) If the maximum of X exists, prove that the maximum is the supremum of X.
- (b) If $\sup X \in X$, prove that $\max(X) = \sup(X)$.

Question 3*

Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above.

(a) If $A \subset B$, prove that $\sup A \leq \sup B$.

(b) For any A and B, prove that $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

Question 4

Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above. Define $A + B = \{a + b : a \in A \text{ and } b \in B\}$. Prove $\sup(A + B) = \sup A + \sup B$.

Question 5*

Consider the following proposition:

PROPOSITION 1. Every nonempty subset S of \mathbb{R} that is bounded below has an infimum.

This question will lead you through the proof of the proposition.

- (a) Suppose S is as in the proposition above. Define the set $-S = \{-s : s \in S\}$. Show that -S is bounded above.
- (b) Use the definition of \mathbb{R} to prove that -S has a supremum, $\sup(-S)$.
- (c) Prove that $-\sup(-S)$ is the infimum of S.

Question 6*

Solve question 6.5 from the textbook.

Question 7

Suppose $X \subseteq \mathbb{N}$ is nonempty and bounded above. Prove that $\max(X)$ exists.

Question 8*

Solve question 7.9 in the textbook. This shows our definition of \mathbb{R} specifies \mathbb{R} up to isomorphism.

Question 9

Prove that a set X is infinite if and only if X has the same cardinality as a proper subset of itself.

Question 10^*

The extended real numbers is the set $\overline{\mathbb{R}} := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$. We may extend the binary operations of addition + and multiplication \cdot and the ordering \leq from \mathbb{R} to $\overline{\mathbb{R}}$ via the following rules:

- (a) $\pm \infty + x = \pm \infty$ for all $x \in \mathbb{R}$. $+\infty + (+\infty) = +\infty$ and $-\infty + (-\infty) = -\infty$. $\pm \infty + (\mp \infty)$ is not defined.
- (b) $\pm \infty \cdot x = \pm \infty$ for $x \in (0, +\infty]$ and $\pm \infty \cdot x = \mp \infty$ for $x \in [-\infty, 0)$. $(\pm \infty) \cdot (\pm \infty) = +\infty$ and $(\pm \infty) \cdot (\mp \infty) = -\infty$. $\pm \infty \cdot x$ is not defined for x = 0.
- (c) $-\infty < x < +\infty$ for all $x \in \mathbb{R}$.

We now recall the definition of *convex* and *non-decreasing* functions.

DEFINITION 2. A function $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is *convex* if

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y) , \text{ for all } \alpha \in [0,1].$$

DEFINITION 3. A function $f : \mathbb{R} \to \mathbb{R}$ is non-decreasing if

$$x \le y \implies f(x) \le f(y).$$

Using these definitions, we will now establish a few basic properties of convex functions.

- (i) Suppose f is a convex function satisfying $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$. Is -f a convex function? Justify your answer.
- (ii) Suppose f and g are convex functions and $c_1, c_2 \in \mathbb{R}$. Under what conditions on c_1 and c_2 is $c_1 f(x) + c_2 g(x)$ always a convex function?
- (iii) Suppose f is convex and g is convex and increasing. Is $g \circ f$ convex? Is $f \circ g$ convex? Justify your answer.