Homework 3 Solutions
(c) Katy Crassly, 2024
(7)
(i) Fix $\varepsilon>0$ arlitrary. Choose $N \in \mathbb{N}$
so that $N>\frac{1}{\varepsilon}+2$ which is possible so that $N>\frac{1}{\varepsilon}+2$, which is possible $v i a$ the Archimedean Property. Then
$n \geq N$ ensures

$$
\begin{aligned}
& \text { Nensures } \\
&\left|\frac{1}{n-2}-0\right|=\left|\frac{1}{n-2}\right|=\frac{1}{n-2}<\varepsilon \varepsilon . \\
& n \geq N>2 \underset{n \geq N>\frac{1}{\varepsilon}+2}{ } \\
& \Leftrightarrow n-2>\frac{1}{\varepsilon} \\
& \Leftrightarrow \varepsilon>n-2
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, this gives the result.
(ii) Fix $\varepsilon>0$. Choose $N \in \mathbb{N}$ s.t. $N>\frac{4}{\varepsilon}$ then $n \geq N$ ensures $\varepsilon>\frac{4}{n}$, so

$$
\left|\frac{2 n}{n+2}-2\right|=\left|\frac{2 n-2(n+2)}{n+2}\right|=\left|\frac{-4}{n+2}\right|=\frac{4}{n+2}<\varepsilon \text {. }
$$

Since $\varepsilon>0$ was arbitrary, this gives
the result.
(iii) Fix $\varepsilon>0$. Choose $N \in \mathbb{N}$ sit. $N>\frac{1}{\varepsilon}$. Then $n \geq N$ ensures $\varepsilon>\frac{1}{n}$, so

$$
\left|\frac{(-1)^{n}}{n}-0\right|=\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}<\varepsilon .
$$

Since $\varepsilon>0$ was arbitrary, this gives
the result.

