MATH 117: HOMEWORK 4

Due Sunday, April 28th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1^*

Which of the following is an equivalent definition of convergence of a sequence?

A sequence s_n converges to a limit s if...

- (a) there exists $\epsilon > 0$ so that, for all $N \in \mathbb{R}$, n > N ensures $|s_n s| < \epsilon$.
- (b) for all $\epsilon \geq 0$, there exists $N \in \mathbb{R}$ so that n > N ensures $|s_n s| < \epsilon$.
- (c) for all $\epsilon > 0$, $|s_n s| < \epsilon$ for all $n \in \mathbb{N}$.
- (d) given $\epsilon > 0$, there is some $N \in \mathbb{R}$ so that $|s_n s| < \epsilon$ for all n > N.

For each of the statements above that are *not* the correct definition of convergence, give an example of either

- a sequence that satisfies the statement but does not converge or
- a sequence that converges but does not satisfy the statement.

In each case, the existence of such an example will illustrate why the statement is *not* equivalent to the correct definition of convergence.

Question 2

Solve exercise 12.2 in the textbook.

Question 3^*

Solve exercise 12.4 in the textbook.

Question 4^*

In this problem, you will prove that, for any $a \in \mathbb{R}$, $a \ge 0$, there exists $b \in \mathbb{R}$, $b \ge 0$ so that $b^2 = a$. This number b is known as the square root of a and is denoted \sqrt{a} . Note that, if a = 0, we can directly see that $0 \cdot 0 = 0$, so $\sqrt{a} = 0$. For the rest of the problem, suppose a > 0.

- (i) Suppose $x, y \ge 0$ with $x^2 < a$ and $y^2 > a$. Prove that there exists $\epsilon_1, \epsilon_2 \in (0, 1)$ so that $(x + \epsilon_1)^2 < a$ and $(y \epsilon_2)^2 > a$.
- (ii) Prove that the set $S = \{z \in \mathbb{R} : z \ge 0, z^2 \le a\}$ is nonempty and bounded above, so that its supremum exists.
- (iii) Prove that $b^2 = a$. (Hint: use the definition of supremum to prove $b^2 \ge a$ and $b^2 \le a$.)

Question 5*

Solve exercise 12.6 in the textbook.

Question 6

Solve exercise 12.7 in the textbook.

Question 7

Solve exercise 13.2 in the textbook.

Question 8*

Solve exercise 13.3 in the textbook. Make sure you justify that your examples by proving they are convergent/bounded/divergent.

Question 9

Solve exercise 13.4 in the textbook.

Question 10*

- (a) Suppose a_n and b_n are convergent sequences and $a_n \leq b_n$ for all but finitely many $n \in \mathbb{N}$. Prove that $\lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n$.
- (b) Does the result of part a continue to hold if we replace both \leq with <? Justify your answer with a proof or counterexample.
- (c) Suppose $c, d \in \mathbb{R}$ and $c \leq d + \frac{1}{n}$ for all $n \in \mathbb{N}$. Prove that $c \leq d$. (Compare this to HW3, Q4.)

Question 11*

An important lemma in the analysis of sequences is known as the squeeze lemma.

LEMMA 1 (Squeeze Lemma). Consider three sequences a_n, b_n , and s_n . If $a_n \leq s_n \leq b_n$ for all but finitely many $n \in \mathbb{N}$ and there exists $s \in \mathbb{R}$ so that

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = s,$$

then $\lim_{n \to +\infty} s_n = s$.

In this question, you will prove the squeeze lemma and consider an important consequene of this lemma.

- (a) Prove the squeeze lemma.
- (b) Suppose s_n and t_n are sequences such that $|s_n| \le t_n$ for all $n \in \mathbb{N}$. Prove that, if $\lim_{n \to +\infty} t_n = 0$, then $\lim_{n \to +\infty} s_n = 0$.
- (c) Is the converse to part (b) true? If so, prove it. If not, give a counterexample and justify your counterexample.

Question 12

We now recall the definition of an *affine* set.

DEFINITION 1. A set $C \subseteq \mathbb{R}^d$ is *affine* if the line through any two points in C lies in C, that is, for all $x_0, x_1 \in C$,

$$(1-\alpha)x_0 + \alpha x_1 \in C, \quad \forall \alpha \in \mathbb{R}.$$

- (a) Give an example of $C \subseteq \mathbb{R}^d$ that is affine but is not a subspace.
- (b) Given $\{x_1, \ldots, x_k\} \subseteq \mathbb{R}^d$, any point of the form

$$\sum_{i=1}^{k} \alpha_i x_i, \text{ such that } \sum_{i=1}^{k} \alpha_i = 1,$$

is an affine combination of $\{x_i\}_{i=1}^k$. If C is affine, prove that C is closed under affine combinations, that is, for any $k \in \mathbb{N}$, $\{x_i\}_{i=1}^k \subseteq C$, all affine combinations of $\{x_i\}_{i=1}^k$ are in C.

(c) If C is an affine set and $x_0 \in C$, prove that

$$C - x_0 := \{x - x_0 : x \in C\}$$

is a subspace.

Question 13*

We now recall the definition of a *convex* set.

DEFINITION 2. A set $C \subseteq \mathbb{R}^d$ is *convex* if the line segment between any two points in C lies in C, that is, for all $x_0, x_1 \in C$,

$$(1-\alpha)x_0 + \alpha x_1 \in C, \quad \forall \alpha \in [0,1].$$

- (a) Give an example of $C \subseteq \mathbb{R}^d$ that is convex but not affine.
- (b) Given $\{x_1, \ldots, x_k\} \subseteq \mathbb{R}^d$, any point of the form

$$\sum_{i=1}^k \alpha_i x_k, \text{ such that } \alpha_i \ge 0 \text{ and } \sum_{i=1}^k \alpha_i = 1,$$

is a convex combination of $\{x_i\}_{i=1}^k$. If C is convex, prove that C is closed under convex combinations, that is, for any $k \in \mathbb{N}$, $\{x_i\}_{i=1}^k \subseteq C$, all convex combinations of $\{x_i\}_{i=1}^k$ are in C. (A convex combination can be thought of as a weighted average of the points.)