Math 117: Homework 5

Due Sunday, May 12th at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Consider a sequence s_{n} satisfying $s_{n} \neq 0$ for all $n \in \mathbb{N}$ and for which $\left|\frac{s_{n+1}}{s_{n}}\right|$ converges to L.
(a) If $L<1$, show that $\lim _{n \rightarrow+\infty} s_{n}=0$.

Hint: Explain why you can select a so that $L<a<1$ and prove that there exists N so that $n>N$ ensures $\left|s_{n+1}\right|<a\left|s_{n}\right|$. Then use induction to show $\left|s_{n}\right| \leq a^{n-N-1}\left|s_{N+1}\right|$ for all $n>N$.
(b) Now prove that if $L>1$ (which includes the possibility $L=+\infty$), then $\lim \left|s_{n}\right|=+\infty$.

Hint: Explain why you can apply the previous part to the sequence $t_{n}=\frac{1}{\left|s_{n}\right|}$.

Question 2*

Consider a nonempty set $X \subseteq \mathbb{R}$. Prove that there exists a sequence $x_{n}: \mathbb{N} \rightarrow X$ so that $\lim _{n \rightarrow+\infty} x_{n}=\sup (X)$.

Question 3

Solve 14.1 from the textbook.

Question 4

Solve 15.3 from the textbook.

Question 5*

Solve 15.4 from the textbook.

Question 6*
Solve 16.1 from the textbook.

Question 7^{*}

Solve 16.8 from the textbook.

Question 8*

In this problem, we will consider sequences s_{n} satisfying the following property:
$\exists s \in \mathbb{R}$ s.t. every subsequence $s_{n_{k}}$ of s_{n} has a further subsequence $s_{n_{k_{l}}}$ satisfying $\lim _{l \rightarrow+\infty} s_{n_{k_{l}}}=s$.
(a) Prove that if $\lim s_{n}=s$, then property $\left(^{*}\right)$ holds.
(b) Prove that if property $\left(^{*}\right)$ holds, then $\lim s_{n}=s$.

Question 9

Solve 17.3 from the textbook.

Question 10

Solve 19.3 from the textbook.

Background on Infinite Series

In calculus, you encountered infinite series of the form

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\ldots, \text { for } a_{k}: \mathbb{N} \rightarrow \mathbb{R}
$$

In fact, these are just limits of sequences. In particular, if we define the sequence

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

to be the sum of the first n terms of the series, then we define the value of the infinite series to be

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow+\infty} s_{n} .
$$

DEFINITION 1. Given a series $\sum_{k=1}^{\infty} a_{k}$, define the sequence $s_{n}=\sum_{k=1}^{n} a_{k}$. Then the series $\sum_{k=1}^{\infty} a_{k}$ converges to a number L if and only if the sequence s_{n} converges to L. Likewise, the series diverges to $+\infty$ or $-\infty$ if and only if the sequence s_{n} diverges to $+\infty$ or $-\infty$.

Question 11* (Cauchy criterion)

(a) Prove that the following is an equivalent definition of a Cauchy sequence:
s_{n} is a Cauchy sequence if, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ so that $n>m \geq N$ ensures $\left|s_{n}-s_{m}\right|<\epsilon$.
(b) Prove the following theorem about series, known as the Cauchy criterion.

THEOREM 1 (Cauchy Criterion). A series $\sum_{k=1}^{\infty} a_{k}$ is convergent if and only if

$$
\text { for all } \epsilon>0 \text { there exists } N \in \mathbb{N} \text { so that } n>m \geq N \text { ensures }\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon \text {. }
$$

(c) Now use the Cauchy Criterion to prove the following corollary:

COROLLARY 2. If a series $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow+\infty} a_{k}=0$.

Question 12

(a) Prove the following by induction: for $a \neq 1$,

$$
\sum_{i=0}^{m-1} a^{i}=1+a+a^{2}+\cdots+a^{m-1}=\frac{1-a^{m}}{1-a}
$$

(b) Use part (a) to show that

$$
\sum_{i=n}^{m-1} a^{i}=a^{n}+a^{n+1}+\cdots+a^{m-2}+a^{m-1}=\frac{a^{n}-a^{m}}{1-a}
$$

(Hint: $\left.\sum_{i=n}^{m-1} a^{i}=\sum_{i=0}^{m-1} a^{i}-\sum_{i=0}^{n-1} a^{i}.\right)$
(c) Recall that, by the triangle inequality, we may estimate

$$
\left|\sum_{i=1}^{n} a_{i}\right|=\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|=\sum_{i=1}^{n}\left|a_{i}\right| .
$$

Let s_{n} be a sequence such that $\left|s_{n+1}-s_{n}\right| \leq 4^{-n}$ for all $n \in \mathbb{N}$. Use part (b) and the above inequality to prove s_{n} is a Cauchy sequence.
(d) Does the sequence from part (c) converge? Justify your answer.

Question 13*

Recall the following facts:

$$
\lim _{n \rightarrow+\infty} r^{n}= \begin{cases}0 & \text { if }|r|<1 \\ 1 & \text { if }|r|=1 \\ +\infty & \text { if } r>1 \\ \text { does not exist } & \text { if } r \leq-1\end{cases}
$$

and

$$
\text { for } r \neq 1, \sum_{k=1}^{n} r^{k}=\frac{1-r^{n+1}}{1-r}
$$

(a) Prove that for $|r|<1, \sum_{k=1}^{\infty} r^{k}=\frac{1}{1-r}$.
(b) Prove that for $|r| \geq 1, \sum_{k=1}^{\infty} r^{k}$ does not converge. (Hint: Use Corollary 2 above.)

