
Math 117: Homework 6
Due Sunday, May 19th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one
extra practice question will appear on each exam.

Question 1*

One can show that the set of rational numbers Q can be listed as a sequence rn. The exact procedure
is a little tedious, but you can get an idea of how it works by considering the below diagram.

2. Sequences70

Example 3
It can be shown that the set Q of rational numbers can be listed
as a sequence (rn), though it is tedious to specify an exact formula.
Figure 11.1 suggests such a listing [with repetitions] where r1 = 0,
r2 = 1, r3 = 1

2 , r4 = −1
2 , r5 = −1, r6 = −2, r7 = −1, etc. Readers

familiar with some set theory will recognize this assertion as “Q
is countable.” This sequence has an amazing property: given any
real number a there exists a subsequence (rnk

) of (rn) converging to
a. Since there are infinitely many rational numbers in every interval
(a−ϵ, a+ϵ) by Exercise 4.11, Theorem 11.2 shows that a subsequence
of (rn) converges to a.

Example 4
Suppose (sn) is a sequence of positive numbers such that inf{sn :
n ∈ N} = 0. The sequence (sn) need not converge or even be
bounded, but it has a subsequence converging monotonically to 0. By
Theorem 11.2, it suffices to show {n ∈ N : sn < ϵ} is infinite for each
ϵ > 0. Otherwise, this set would be finite for some ϵ0 > 0. If the set
is nonempty, then inf{sn : n ∈ N} = min{sn : sn < ϵ0} > 0, because
each sn is positive and the set {sn : sn < ϵ0} is finite. This contra-
dicts our assumption inf{sn : n ∈ N} = 0. If the set is empty, then
inf{sn : n ∈ N} ≥ ϵ0 > 0, again contrary to our assumption.

The next theorem is almost obvious.

FIGURE 11.1

For example, r1 = 0, r2 = 1, r3 = 1/2, and so on. Note that some numbers, such as −1, are included
multiples times.

(a) For any ε > 0 and a ∈ R, show that the set {r ∈ Q : |r − a| < ε} contains infinitely many
elements. (Hint: Use denseness of the rationals.)

(b) Let rn be the sequence of rational numbers. Use part (a) to show that for any a ∈ R, there
exists a subsequence rnk

that converges to a. (Hint: Use part (a) to show that the set
{n ∈ N : |rn − a| < ε} is infinite.)

(c) Let rn be the sequence of rational numbers. Show that there exists a subsequence rnk
satisfying

limk→+∞ rnk
= +∞.

Question 2* (decimal expansions)

In this problem you will show that any number that can be represented as a nonnegative decimal
expansion can be thought of as the limit of a bounded increasing sequence of real numbers. Since
all bounded monotone sequences converge, this guarantees that any decimal expansion you can
imagine represents (converges to) a real number.

Suppose we are given a decimal expansion K.d1d2d3d4 . . . , where K is a nonnegative integer and
each dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let

sn = K +
d1
101

+
d2
102

+ · · ·+ dn
10n

.
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(a) Show sn is an increasing sequence. (This is almost obvious. Your proof should be short.)

(b) Use a result from the previous homework to prove that 9
10 + 9

102
+ · · ·+ 9

10n = 1− 1
10n .

(c) Use part (b) to prove that sn is a bounded sequence.

(d) Since 0.9̄ = 0.999 . . . and 1 are both decimal expansions, by what you have shown, they both
correspond to a real number. Use the hint from part (b) to show that they actually correspond
to the same real number.

Question 3

Solve 18.1 from the textbook.

Question 4

Solve 19.4 from the textbook

Question 5*

Consider two series
∑∞

k=1 ak and
∑∞

k=1 bk with

0 ≤ ak ≤ bk for all k ∈ N.

If
∑∞

k=1 ak = +∞, prove that
∑∞

k=1 bk = +∞.

Question 6

Suppose
∑∞

k=1 ak = A and
∑∞

k=1 bk = B for A,B ∈ R.

(a) Use the limit theorems for sequences to prove that
∑∞

k=1(ak + bk) = A+B.

(b) Use the limit theorems for sequences to prove that for c ∈ R,
∑∞

k=1 cak = cA.

Question 7* (absolute value of a series)

In general, the expression
∑∞

k=1 ak doesn’t always have meaning, since the limit of the corresponding
sequence sn =

∑n
k=1 ak doesn’t always exist. On the other hand, in this problem you will show

that the expression
∑∞

k=1 |ak| always has meaning.

(a) Prove that
∑∞

k=1 |ak| is either convergent or diverges to +∞.

(Hint: Show that the corresponding sequence sn =
∑n

k=1 |ak| is monotone.)

(b) Prove that if
∑∞

k=1 |ak| is convergent, then
∑∞

k=1 ak is also convergent.

(Hint: First explain why |∑n
k=m+1 ak| ≤

∑n
k=m+1 |ak|. Combine this fact with the Cauchy

Criterion.)
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Question 8

Solve 30.3 from the textbook.

Question 9

Solve 30.5 from the textbook.

Question 10*

Solve 30.6 from the textbook.

Question 11

Solve 30.8 from the textbook.

Question 12*

Given a function f : R→ R ∪ {+∞}, its epigraph is defined to be the set

epi(f) := {(x, t) ∈ R× R : t ≥ f(x)}.

Prove that f is a convex function if and only if epi(f) is a convex set.
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