Math 117: Homework 7

Due Sunday, June 2nd at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Prove the following theorem.
THEOREM 1. Consider $x_{n}: \mathbb{N} \rightarrow \mathbb{R}$.
(i) Fix $x \in \mathbb{R}$. Then x is a subsequential limit of x_{n} if and only if the set $\left\{n:\left|x_{n}-x\right|<\epsilon\right\}$ is infinite for all $\epsilon>0$.
(ii) $+\infty$ is a subsequential limit of x_{n} if and only if x_{n} is unbounded above.
(iii) $-\infty$ is a subsequential limit of x_{n} if and only if x_{n} is unbounded below.

This has been corrected in the Lecture 15 and the version of this for the extended real numbers has been written in the Lecture 16 notes

Question 2

In lecture 12 , we stated the following theorem.
THEOREM 2. If a is a right and left accumulation point of $X \subseteq \mathbb{R}$, then

$$
\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L
$$

We proved the implication \Longrightarrow. Then we proved the implication \Longleftarrow in the special case $L \in \mathbb{R}$. In this problem, you will show the result continues to hold even if $L \in\{-\infty,+\infty\}$.
(i) Prove that $x_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$ diverges to $+\infty$ if and only if every subsequence $x_{n_{k}}$ has a further subsequence $x_{n_{k_{l}}}$ that diverges to $+\infty$.
(ii) Use the fact from part (i) to adapt the proof from class to the case $L \in\{-\infty,+\infty\}$.

Question 3*

Consider the following definition of right continuity.
DEFINITION 1. A function $f: X \rightarrow \mathbb{R}$ is right continuous at $a \in X$ if either
(i) a is not a right accumulation point of X or
(ii) a is a right accumulation point of X and $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
(a) Prove that a is an accumulation point of a set $X \subseteq \mathbb{R}$ if and only if either a is a left accumulation point of X or a is a right accumulation point of X.
(b) Use the above definition to define what it means for a function to be left-continuous at a point in its domain.
(c) Prove that $f: X \rightarrow \mathbb{R}$ is continuous at $a \in X$ if and only if it is right and left continuous at a.
(d) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is right continuous at x for all $x \in[0,1]$, but for which there exists $x_{0} \in[0,1]$ so that f is not lower semicontinuous at x_{0}. Justify your answer.

