MATH 117: HOMEWORK 7

Due Sunday, June 2nd at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Prove the following theorem.

THEOREM 1. Consider $x_n : \mathbb{N} \to \mathbb{R}$.

- (i) Fix $x \in \mathbb{R}$. Then x is a subsequential limit of x_n if and only if the set $\{n : |x_n x| < \epsilon\}$ is infinite for all $\epsilon > 0$.
- (ii) $+\infty$ is a subsequential limit of x_n if and only if x_n is unbounded above.
- (iii) $-\infty$ is a subsequential limit of x_n if and only if x_n is unbounded below.

This has been corrected in the Lecture 15 and the version of this for the extended real numbers has been written in the Lecture 16 notes

Question 2

In lecture 12, we stated the following theorem.

THEOREM 2. If a is a right and left accumulation point of $X \subseteq \mathbb{R}$, then

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$

We proved the implication \implies . Then we proved the implication \Leftarrow in the special case $L \in \mathbb{R}$. In this problem, you will show the result continues to hold even if $L \in \{-\infty, +\infty\}$.

- (i) Prove that $x_n : \mathbb{N} \to \overline{\mathbb{R}}$ diverges to $+\infty$ if and only if every subsequence x_{n_k} has a further subsequence $x_{n_{k_i}}$ that diverges to $+\infty$.
- (ii) Use the fact from part (i) to adapt the proof from class to the case $L \in \{-\infty, +\infty\}$.

Question 3*

Consider the following definition of right continuity.

DEFINITION 1. A function $f: X \to \mathbb{R}$ is right continuous at $a \in X$ if either

- (i) a is not a right accumulation point of X or
- (ii) a is a right accumulation point of X and $\lim_{x\to a^+} f(x) = f(a)$.
- (a) Prove that a is an accumulation point of a set $X \subseteq \mathbb{R}$ if and only if either a is a left accumulation point of X or a is a right accumulation point of X.
- (b) Use the above definition to define what it means for a function to be left-continuous at a point in its domain.

- (c) Prove that $f: X \to \mathbb{R}$ is continuous at $a \in X$ if and only if it is right and left continuous at a.
- (d) Give an example of a function $f : [0,1] \to \mathbb{R}$ that is right continuous at x for all $x \in [0,1]$, but for which there exists $x_0 \in [0,1]$ so that f is not lower semicontinuous at x_0 . Justify your answer.