Math 117: Homework 8

Due Sunday, June 9th at 11:59pm
Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Suppose f is continuous on \mathbb{R} and $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists $a \in \mathbb{R}$ so that $f(x)=a x$.

Question 2*

Solve J\&P 34.4.

Question 3*

Determine whether the following statements are true or false. If they are true, prove them. If they are false, give a counterexample and justify it.
(a) If a sequence s_{n} satisfies $\lim \sup s_{n}=2$, then $s_{n}>1.99$ for all n large enough.
(b) If a sequence s_{n} satisfies $\lim \sup s_{n}=b$, then $s_{n} \leq b$ for all n large enough.

Question 4

Suppose s_{n} and t_{n} are bounded sequences.
(a) Prove that $\limsup s_{n}+t_{n} \leq \limsup s_{n}+\lim \sup t_{n}$.
(b) Give an examples of bounded sequences s_{n} and t_{n} for which $\lim \sup s_{n}+t_{n}<\lim \sup s_{n}+$ $\limsup t_{n}$.

Question 5

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is both lower semicontinuous and upper semicontinuous at x_{0}. Prove that f is continuous at x_{0}.

Question 6*

Suppose $f:[a, b] \rightarrow \mathbb{R} \cup\{+\infty\}$ is lower semicontinuous at x for all $x \in[a, b]$.
(a) Prove that f is bounded below on $[a, b]$.
(b) Prove that there exists $x_{*} \in[a, b]$ so that $f\left(x_{*}\right)=\inf \{f(x): x \in[a, b]\}$.
(c) Now suppose, in addition, that f is strictly convex, that is,

$$
f((1-\alpha) x+\alpha y)<(1-\alpha) f(x)+\alpha f(y), \quad \forall \alpha \in(0,1) .
$$

Prove that the x_{*} found in part (b) is unique.

