Office Hours:
Wed 3:30-4:30pm, Thur 1-2pm

This Friday, last makeup lecture 3:30-4:45pm

3.0 Definition of the Limit of a Function

Def: Given $X \subseteq \mathbb{R}$, $a \in \mathbb{R}$, a is an accumulation point of X if for all $\delta > 0$, there exists $x \in X$ such that $0 < |x - a| < \delta$

Lemma: a is an accumulation point of $X \subseteq \mathbb{R}$ if and only if $\exists \{x_n\} : N \rightarrow \mathbb{R}$ such that $x_n \in X \setminus \{a\}$ for all $n \in N$ and $x_n \rightarrow a$.
Def: Given \(X \subseteq \mathbb{R} \) nonempty, \(f: X \rightarrow \mathbb{R} \), \(a \) an accumulation point of \(X \), \(L \in \mathbb{R} \), the limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \) if, for all sequences \(\{x_n\} \in X \setminus \{a\} \) s.t. \(x_n \to a \), we have \(\lim_{n \to \infty} f(x_n) = L \).

We denote this as \(\lim_{x \to a} f(x) = L \).

Ex: \(X = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \)

\(f: X \rightarrow \mathbb{R}, \quad f(x) = \frac{1}{x} \)

\(a = 0 \) is an accumulation point of \(X \)

\(\lim_{x \to 0} f(x) = +\infty \)
Let's prove this!

Fix \(x_n : \mathbb{N} \to X \), s.t. \(x_n \to 0 \).

We must show \(\lim_{n \to \infty} f(x_n) = +\infty \).

Fix \(M \in \mathbb{R} \).

\\

Scratch: WLOG \(M > 0 \).

\[
\frac{1}{x_n} = f(x_n) > M \iff \frac{1}{M} > x_n
\]

If \(M \leq 0 \), then \(f(x_n) = M \) \(\forall n \in \mathbb{N} \)

and we are done. Suppose \(M > 0 \).

Since \(x_n \to 0 \), \(\exists N \in \mathbb{N} \) s.t. \(n > N \)

ensures \(x_n = |x_n - 0| < \frac{1}{M} \).

Thus \(n > N \), \(f(x_n) = \frac{1}{x_n} > M \).

Hence \(\lim_{n \to \infty} f(x_n) = +\infty \).
\[X = \{ \frac{1}{m} : m \in \mathbb{Z}, m \neq 0 \} \]
\[f : X \to \mathbb{R}, \quad f(x) = \frac{1}{x}. \]
\[\lim_{x \to 0} f(x) \quad \text{D.N.E.} \]

Prop: Given \(X = \mathbb{R} \) nonempty, \(f : X \to \mathbb{R} \), \(a \) an accumulation point of \(X \), and \(L \in \mathbb{R} \), then
\[\lim_{x \to a} f(x) = L \]

\[\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in X \text{ with } 0 < |x - a| < \delta, \text{ we have } |f(x) - L| < \varepsilon. \]
Ex: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x - 1$

If x is in this interval, then $|f(x) - 2| < 3$

Guess: $\lim_{{x \to 1}} f(x) = 2$

Last time, we showed this using sequences defn. Now, we shall via ε-δ characterization.

Proof: Fix $\varepsilon > 0$ arbitrary.
Scratch:
\[
|f(x) - 2| < 3 \iff |3x - 3| < 3 \\
\iff 3|1x - 1| < 3 \\
\iff |x - 1| < \frac{3}{3}
\]

Let \(\delta = \frac{3}{3} \). Then \(0 < |x - 1| < \delta \) ensures \(|f(x) - 2| < 3 \).

Remark: If the derivative of \(f \) at \(a \) is larger, \(\delta \) must be smaller.
Calculus:
\[f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} 3x + 1, & x \neq 1 \\ 0, & x = 1 \end{cases} \]

Guess: \(\lim_{x \to 1} f(x) = 2 \)
First: just like we combined sequences to get new sequences, we can combine fns to get new fns via pointwise operations.

Def: Given $X \subseteq \mathbb{R}$, $f,g : X \rightarrow \mathbb{R}$, $c \in \mathbb{R}$,

(i) $|f| (x) = |f(x)|$

(ii) $(cf)(x) = cf(x)$ \hspace{1cm} \forall x \in X$

(iii) $(f+g)(x) = f(x) + g(x)$

(iv) $(fg)(x) = f(x)g(x)$

(v) $(f/g)(x) = \begin{cases} f(x) & \text{if } g(x) \neq 0 \\ \frac{1}{g(x)} & \text{if } g(x) = 0 \end{cases}$
Now, we have analogies of limit theorems...

Thm: Given $X \subseteq \mathbb{R}$, $f, g : X \to \mathbb{R}$, $c \in \mathbb{R}$, a is an acc of X, if \(\lim f(x) = L \in \mathbb{R} \) and \(\lim g(x) = M \in \mathbb{R} \), \(x \to a \) then

(i) \(\lim_{x \to a} |f(x)| = |L| \)

(ii) \(\lim_{x \to a} (cf)(x) = cL \)

(iii) \(\lim_{x \to a} (f + g)(x) = L + M \)

(iv) \(\lim_{x \to a} (fg)(x) = LM \)

(v) \(\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{M} \), as long as \(M \neq 0 \).
Pf: We will show (iii).

Fix arbitrary $x_n: \mathbb{N} \to X \setminus \{a\}$ s.t. $x_n \to a.$ Then $f(x_n) \to L$ and $g(x_n) \to M.$ Thus,

$$\lim_{n \to \infty} f(x_n) + g(x_n) = L + M.$$

This shows $\lim_{x \to a} (f + g)(x) = L + M.$
Recall:

\(\exists x : x = \left\{ \frac{1}{m} : m \in \mathbb{Z}, m \neq 0 \right\} \)

\(f : X \to \mathbb{R}, \ f(x) = \frac{1}{x} \).

\[\lim_{x \to 0} f(x) \text{ D.N.E.} \]

Def: Given \(X = \mathbb{R}, a \in \mathbb{R} \) is

a right acc point of \(X \)

if for every \(\delta > 0 \), there exists \(x \in X \) s.t.

\[
\begin{align*}
0 < x - a < \delta \\
0 < a - x < \delta
\end{align*}
\]
Lemma: \(\alpha \) is a right (resp. left) acc point of \(X \subseteq \mathbb{R} \).

\[\exists x_n : \mathbb{N} \rightarrow X \setminus \{ \alpha \} \text{ s.t. } x_n \uparrow \alpha \]

Proof: Suppose \(\alpha \) is a right acc point of \(X \). We define \(x_n \) inductively.
Choose x_1 s.t. $x_1 \in X$ and $0 < a - x_1 < 1$.

Suppose we have chosen $x_n \in X \setminus \{a\}$ s.t. $x_{n-1} \leq x_n$ and $0 < a - x_n < \frac{1}{n}$.

Let $\delta = \min \left\{ \frac{1}{n+1}, a - x_n \right\}$. By defn of right acc point, $\exists x_{n+1} \in X \setminus \{a\}$ s.t. $0 < a - x_{n+1} < \delta$.

Since $a - x_{n+1} < a - x_n$, $x_n < x_{n+1}$. Likewise $a - x_{n+1} < \frac{1}{n+1}$.
This defines an increasing sequence satisfying
\[0 < a - x_n < \frac{1}{n} \] \[\forall n \in \mathbb{N}. \]

By Squeeze Lemma, \(\lim_{n \to \infty} x_n = a. \)

Other direction next time.
33 Continuity