Lecture 12

Office Hours:
Wed 3:30-4:30pm, Thur 1-2pm

This Friday, last makeup lecture 3:30-4:45pm

3.1 Limit Theorems for Functions

Def: Given \(X \subseteq \mathbb{R}, f, g : X \to \mathbb{R} \),

\(c \in \mathbb{R} \)

(i) \(f(1(x)) = |f(x)| \)

(ii) \((cf)(x) = cf(x) \) \(\forall x \in X \)

(iii) \((f + g)(x) = f(x) + g(x) \)

(iv) \((fg)(x) = f(x)g(x) \)

(v) \(\frac{f}{g}(x) = \frac{f(x)}{g(x)} \) \(\forall x \in X \) s.t. \(g(x) \neq 0 \)
Thm: Given \(x \subseteq \mathbb{R}, \ f, g: x \rightarrow \mathbb{R} \), \(c \in \mathbb{R} \), \(\alpha \) is an acc of \(x \), if \(\lim f(x) = L \in \mathbb{R} \) and \(\lim g(x) = M \in \mathbb{R} \), then:

(i) \(\lim_{x \rightarrow \alpha} f(x) = L \)

(ii) \(\lim_{x \rightarrow \alpha} (cf)(x) = cL \)

(iii) \(\lim_{x \rightarrow \alpha} (f + g)(x) = L + M \)

(iv) \(\lim_{x \rightarrow \alpha} (fg)(x) = LM \)

(v) \(\lim_{x \rightarrow \alpha} \left(\frac{f}{g} \right)(x) = \frac{L}{M} \), as long as \(M \neq 0 \).
Def: Given $X \subseteq \mathbb{R}$, $a \in \mathbb{R}$ is a right acc point of X if $\forall \delta > 0$, $\exists x \in X$ s.t.

\begin{align*}
0 < a - x &< \delta \\
0 < x - a &< \delta
\end{align*}

a is a right acc of X
Lemma: α is a right (resp. left) acc point of $X \subseteq \mathbb{R}$

\[\exists \ x_n \in \mathbb{N} \rightarrow X \setminus \{ \alpha \} \text{ s.t. } x_n \uparrow \alpha \ x_n \downarrow \alpha \]

Proof: We will prove for right acc pts. Last time, we showed \downarrow.

Now, we will show \uparrow. Fix arbitrary $\delta > 0$. Note that $x_n < \alpha$ \(\forall n \in \mathbb{N} \). To see this, assume for the sake of contradiction, that $x_N \geq \alpha$ for some $N \in \mathbb{N}$. Since $x_N \in X \setminus \{ \alpha \}$ we have $x_N > \alpha$. Let $\varepsilon = x_N - \alpha$.\}
Then, \(\forall n \geq N, \ x_n \geq x_N > a \).
Hence \(|x_n - a| > 3 \) \(\forall n \geq N \).
Thus \(x_n \not\to a \), which is a contradiction.

Since \(x_n \to a \), \(\exists N \ s.t. \)
\[|x_n - a| < \varepsilon \iff a - x_n < \varepsilon. \]

\[\square \]

Def: Given \(X \subseteq \mathbb{R}, f: X \to \mathbb{R} \),
\(a \in \{ \text{right acc pt of } X, \text{let } \mathbb{R} \} \)
the limit of \(f(x) \) as \(x \) approaches \(a \) \{ from the left \}
is \(L \) if \{ from the right \}
\(\forall \ x_n : |N \to X \setminus \{a\} \ s.t. \ \{x_n \to a, \lim_{n \to \infty} f(x_n) = L \} \)

Def: Given \(X \subseteq \mathbb{R}, f: X \to \mathbb{R} \),
\(a \in \{ \text{right acc pt of } X, \text{let } \mathbb{R} \} \)
the limit of \(f(x) \) as \(x \) approaches \(a \) \{ from the left \}
is \(L \) if \{ from the right \}
\(\forall \ x_n : |N \to X \setminus \{a\} \ s.t. \ \{x_n \to a, \lim_{n \to \infty} f(x_n) = L \} \)
We denote this as:

\[\lim_{x \to a^-} f(x) = L \]

\[\lim_{x \to a^+} f(x) = L \]

Ex:

![Graph showing a limit approaching a point from both sides](image)

Q: \(a \) is an acc pt of \(f \)

or

\(a \) is a R and L acc pt of \(f \)

A: HW7
Ex: Consider \(X = \{ \frac{1}{n} : n \in \mathbb{N} \} \). Then \(a = 0 \) is a acc point, a L acc point, but not a R acc pt.

Thm: Suppose \(a \) is a R and L acc pt of \(X \). Then

\[
\lim_{x \to a^-} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L.
\]

Recall: Given \(x_n : \mathbb{N} \to \mathbb{R} \),
- \(x_n \) converges to \(L \in \mathbb{R} \)
- \(\uparrow \)
- every subsequence \(x_{n_k} \) has a further subsequence \(x_{n_{k_l}} \) s.t. \(x_{n_{k_l}} \to L \).
Note that \(\Rightarrow \) is immediate from defn.

Now, we will show \(\Leftarrow \).

We will show in the case that \(L \in \mathbb{R} \). For the case \(L = \pm \infty \), HW7.

Fix \(x_n : \mathbb{N} \to X \) s.t. \(x_n \to \alpha \).

We must show \(\lim_{n \to \infty} f(x_n) = L \).

Let \(x_{n_k} \) be an arb subsequence of \(x_n \). Then there exists a further subseq \(x_{n_{k_k}} \) that is monotone, so either \(x_{n_{k_k}} \uparrow \alpha \) or \(x_{n_{k_k}} \downarrow \alpha \).
In either case, we have
\[\lim_{l \to \infty} f(x_{n_{k_l}}) = L. \]

This shows that \(f(x_n) : \mathbb{N} \to \mathbb{R} \) has the property that every subseq \(f(x_{n_{k_l}}) \) has a further subseq \(f(x_{n_{k_{l_2}}}) \) s.t. \(f(x_{n_{k_{l_2}}}) \to L. \)

Thus, \(\lim_{n \to \infty} f(x_n) = L. \)

Last type of limiting behavior: as \(x \to \pm \infty \).
Intuitively, \(+\infty \) behaves like an \(\infty \) for \(f(x) \) if \(X \) is unbounded above.

Def: Given \(X \subseteq \mathbb{R} \) \(\{ \) unbounded above, unbounded below \(\} \), \(f: X \to \mathbb{R}, L \in \mathbb{R} \), then the limit of \(f(x) \) as \(x \) approaches \(+\infty \) \(-\infty \) is \(L \) if, \(\forall x_n : \mathbb{N} \to X \) with

\[
\begin{align*}
\lim_{n \to \infty} x_n &= +\infty \\
\lim_{n \to \infty} x_n &= -\infty
\end{align*}
\]
we have \(\lim_{n \to \infty} f(x_n) = L \).

If this holds, we write \(\lim_{x \to \infty} f(x) = L \) \(\lim_{x \to -\infty} f(x) = L \).
Ex: \(f: (0, +\infty) \to \mathbb{R} \) \(f(x) = \frac{\sin x}{x} \)

We expect \(\lim_{x \to +\infty} f(x) = 0 \).

pf: Fix \(x_n: \mathbb{N} \to (0, +\infty) \) s.t. \(\lim_{n \to \infty} x_n = +\infty \).

We must show \(\lim_{n \to \infty} f(x_n) = 0 \).

Note that \(-\frac{1}{x_n} \leq f(x_n) \leq \frac{1}{x_n} \).

Since \(-\frac{1}{x_n}, \frac{1}{x_n} \to 0 \), the result follows from Squeeze Lemma.

33 Continuity
Def: Given \(f: \mathbb{R} \rightarrow \mathbb{R} \), \(\alpha \in \mathbb{R} \), \(f \) is continuous at \(\alpha \) if either

1. \(\alpha \) is an accumulation point of \(\mathbb{R} \) and \(\lim_{x \to \alpha} f(x) = f(\alpha) \)
2. \(\alpha \) is an isolated point

Ex:

\[f(x) = c_1 x^n + c_2 x^{n-1} + \ldots + c_n x + c_{n+1} \]

\(f \) is continuous at \(\alpha \), \(\forall \alpha \in \mathbb{R} \)
Thm: Given $X \subseteq \mathbb{R}$, $f, g : X \to \mathbb{R}$ cts at $a \in X$, then the following are cts at a:

(i) $|f|$
(ii) cf, for $c \in \mathbb{R}$
(iii) $f + g$
(iv) fg
(v) $f \circ g$, provided $g(a) \neq 0$.

Pf: We will show (v). If a is an isolated pt wrt X, the result is immediate. Assume a is an acc point of X. Let

$$\lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = M.$$

By assumption that f and g are cts at a.
By earlier theorem,
\[
\lim_{{x \to a}} \frac{f}{g}(x) = \frac{f(a)}{g(a)} = \frac{f(a)}{g(a)} \cdot \frac{\xi}{\xi} = (f/g)(a).
\]

Thm (3-8 char of continuity): Given \(X \in \mathbb{R}, f : X \to \mathbb{R}, \) and \(f \) is continuous at \(a \) if

\[
\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } x \in X \text{ and } |x - a| < \delta \text{ ensures } |f(x) - f(a)| < \varepsilon.
\]
\[\text{pf: Suppose } f \text{ is cts at } a. \]
\[\text{Fix } \epsilon > 0 \text{ arbitrary.} \]

If \(a \) is an isolated point w.r.t. \(X \), then \(a \) is not an accpt of \(X \), so \(\exists \delta > 0 \text{ s.t. } x \in X \text{ and } |x-a| < \delta \text{ ensures } x = a. \]

Thus: \(|f(x) - f(a)| = 0 < \epsilon. \)

Now, suppose \(a \) is an accpt of \(X \). Then, since \(f \) is cts at \(a \),
\[\lim_{x \to a} f(x) = f(a). \]

Last time, we showed that this implies \(\exists \delta > 0 \text{ s.t. } x \in X \text{ and } 0 < |x-a| < \delta \text{ ensures } |f(x) - f(a)| < \epsilon. \)
This shows $\forall x \in X, |x-a| < \delta$ ensures $|f(x) - f(a)| < \epsilon$.

Next time: other implication.

34 The Heine-Borel Theorem