Lecture 12
Office Hours:
Wed 3:30-4:30pm, Thur 1-2pm This Friday, last makeup lecture 3:30-4:45 pm
31 Limit Theorems for Functions
Def: Given $x \leq \mathbb{R}, f, g: X \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& \text { (i) }|f|(x)=|f(x)| \\
& \text { (ii) }(c f \mid(x)=c f(x) \\
& \text { (iii) }(f+c)(x)=f(x)+g(x) \\
& \text { (iv) }(f g))(x)=f(x) g(x) \\
& \text { (v) }(f) g)(x)=\frac{f(x)}{g(x)} \quad \forall x \in X \text { sit. } g(x) \neq 0
\end{aligned}
$$

The: Given $\chi \subseteq \mathbb{R}, f, g: X \rightarrow \mathbb{R}$, $\overline{C \in \mathbb{R}}, a$ is an accoof χ_{1} if $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}$ and $\lim _{x \rightarrow a} g(x)=m \in \mathbb{R}$,
then
(i) $\lim _{x \rightarrow a}|f|(x)=|2|$
(ii) $\lim _{x \rightarrow a}(c f)(x)=c L$
(iii) $\lim _{x \rightarrow a}(f+g)(x)=L+m$
(iv) $\lim _{x \rightarrow a}(f g)(x)=L M$
(v) $\lim _{x \rightarrow a}(f / g)(x)=\frac{L}{m}$, as long as $m \neq 0$.

32 One-Sided and Infinite Limits
Def: Given $x \leqslant \mathbb{R}, a \in \mathbb{R}$ is a $\left\{\begin{array}{l}\text { bight acc point of } x \\ \text { left acc point ass } x\end{array}\right.$ $\{$ left acc point ass x if $\forall \mathcal{O}>0, \exists x \in \chi$ st.

$$
\left\{\begin{array}{l}
0<a-x<\delta \\
0<x-a<\delta
\end{array}\right.
$$

Q is a right acc of X

Lemma a is a right (resp. left) acc point of $X \leq \mathbb{R}$
$\exists x_{n}: N \cap \chi \backslash\{a\}$ s.t. $x_{n} \uparrow Q$ $x_{n} \searrow a$
Pf: We will prove for right acc pts. Last time, we showed \downarrow.

Now, we will show 介. Fix arbitrary $\delta>0$. Note that $x_{n}<a \quad n \in \mathbb{N}$. To see this, assume for the sake of
contradiction, that $x_{N} \geq a d$ contradiction, that $x_{N} \geq a 0$ for some $N \in \mathbb{N}$. Since $x_{N} \in X \backslash\{a\}$ we have $x_{N}>a$. Let $\varepsilon=x_{N}-a$.

Then, $\forall n \geq N, x_{n} \geq x_{N}>a$.
Hence $\left|x_{n}-a\right|>\varepsilon \quad \forall n \geq N$.
Thus $x_{n} \nrightarrow a$, which is a contradiction.

Since $x_{n} \rightarrow a, \exists N$ s.t.

$$
\left|x_{N}-a\right|<\delta \stackrel{ }{\rightleftharpoons} a-x_{N}<\delta \text {. }
$$

Def: Given $x \leq \mathbb{R}, f: x \rightarrow \overline{\mathbb{R}}$,
$\bar{e} d\left\{\begin{array}{l}\text { right acc } p t \text { of } x_{1}, L \in \mathbb{R}, \\ \text { left acc } p t\end{array}\right.$ $\left\{\begin{array}{l}\text { left acc pt }\end{array}\right.$
the limitaf $f(x)$ as x approaches
a $\left\{\begin{array}{l}\text { from the left is } L \text { if }\end{array}\right.$ from the right
$\forall x_{n}: \mathbb{N} \rightarrow x \backslash\{a\}$ sst. $\left\{\begin{array}{l}\left.x_{n}\right\rangle a, \\ x_{n} \downarrow a\end{array}\right.$,

We denote this as

$$
\begin{aligned}
& \lim _{x \rightarrow a^{-}} f(x)=L \\
& \lim _{x \rightarrow a^{+}} f(x)=L
\end{aligned}
$$

ε_{x}

$Q: Q$ is an acc pt of x
a is a R and L acc $p+$ of x
$A: H W 7$

Ex: Consider $x=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Then $a=0$ is a acc point, a Macc point, but not a Raccpt.
The: Suppose Q is a R and Lace pt of x. Then

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L .
$$

Recall: Given $x_{n}: \mathbb{N} \rightarrow \mathbb{R}_{1}$ - x_{n} converges to $L \in \mathbb{R}$
$\stackrel{\Uparrow}{2}$

- every subsequence $x_{n_{k}}$ has a further subsequence $x_{n_{k}}$ s.t. $x_{n_{k_{l}}} \rightarrow$.

Pl:
Note that \Rightarrow is immediate from def.
Now, we will show \Leftarrow.
We will show in the case that $L \in \mathbb{R}$. For the case $L= \pm \infty, H W$ ' .

Fix $x_{n}: \mathbb{N} \rightarrow X \backslash\{a\}$ s.t. $x_{n} \rightarrow Q$.
We must show $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Let $x_{n_{k}}$ be an arb subsequence of x_{n}. Then there exists a footer sulseq $x_{n_{k l}}$ that is monotone, so either $x_{n_{k l}} \lambda a$ ar $x_{n_{k l}} \searrow a$.

In either case, we have

$$
\lim _{l \rightarrow \infty} f\left(x_{n_{k_{l}}}\right)=L
$$

This shows that $f\left(x_{n}\right): \mid N \rightarrow \mathbb{R}$ has the property that every subseq $f\left(x_{n_{k}}\right)$ has a fur then subseq $f\left(x_{n_{k \ell}}\right)$ s.t. $f\left(x_{n_{k_{l}}}\right) \rightarrow L$.

Thus, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Last type of limiting behavior: as $x \mapsto \pm \infty$.

Intuitively, $+\infty$ behaves like an aec for χ if X is unbounded above.

Def: Given $x \subseteq \mathbb{R}\left\{\begin{array}{l}\text { unbounded above, } \\ \text { unbounded below }\end{array}\right.$
$f: x \rightarrow \overline{\mathbb{R}}, L \in \mathbb{R}$, then the limit of $f(x)$ as x approaches $\left\{\begin{array}{l}+\infty \\ -\infty\end{array}\right.$

$$
\begin{aligned}
& \text { is } L \text { if, } \forall x_{n}: \mathbb{N} \rightarrow \chi \text { with } \\
& \lim _{n \rightarrow \infty} x_{n}=+\infty \\
& \lim _{n \rightarrow \infty} x_{n}=-\infty \\
& \text { we have } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
\end{aligned}
$$

If this holds, we write $\left\{\begin{array}{l}\lim _{\lim _{x \rightarrow-\infty}} f(x)=L \\ x \rightarrow-\infty\end{array}\right.$

We must show $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$.
Note that $\frac{-1}{x_{n}} \leq f\left(x_{n}\right) \leq \frac{1}{x_{n}}$
Since $\frac{-1}{x_{n}} \frac{1}{x_{n}} \rightarrow 0$, the result
follows from Sgueerge Lemma.
33 Continuity

Def: Given $x \subseteq \mathbb{R}, f: x \rightarrow \mathbb{R}$, $a \in \partial$, f is continuous at a if either
(i) a is an acc pt of x and $\lim _{x \rightarrow a} f(x)=f(a), a$ is an isolated point
(ii) Q is notan acc pt of x
εx

$$
\begin{aligned}
& \varepsilon x: f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}
\end{aligned}
$$

fisc cts at $a, \forall a \in \mathbb{R}$

Chm Given $x \leqslant \mathbb{R}, f_{1 g}: x \rightarrow \mathbb{R}$
cts at $a \in X$, then the
following are cts at a:
(i) $|f|$
(ii) $c f$, for $c \in \mathbb{R}$
(iii) fog
(iv) $f y$
(v) $f \not \subset g$, provided $g(a) \neq 0$. Pl: We will show (v). If a is an isolated pt wort χ, the result is immediate. Assume a is an acc point of X. Let $\begin{array}{cc}\lim _{x \rightarrow a} f(x)=L \text { and } & \lim _{x \rightarrow a} g(x)=m . \\ & \\ f(a) & \\ & \\ & g(a)\end{array}$
By assumption that f and gore cts at a.

By earlier theorem,

$$
\begin{array}{r}
\lim _{x \rightarrow a}(f / g)(x)=\frac{L}{m}=\frac{f(a)}{g(a)} \\
\\
(f / g)(a) .
\end{array}
$$

$\operatorname{Thm}_{x \in \mathbb{R}}(\varepsilon-\delta$ char of ctr): Given

$$
x \leq \mathbb{R}, f: x \rightarrow \mathbb{R}, a \in X
$$

f is cts at Q
介
$\forall \varepsilon>0, \exists \delta>0$ s.t. $x \in X$ and $|x-a|<\delta$ ensures $|f(x)-f(a)|<\varepsilon$.

Pf: Suppose fists at a. Fix $x>0$ arbitrary.
If Q is an isolated point w.r.t. X, then a is not an acc pt of x, so $\exists \delta>0$ s.t. $x \in \chi$ and $|x-a|<\delta$ ensures $x=Q$.
Thus $|f(x)-f(a)|=0<\varepsilon$.
Now, suppose a is an acc point of x. Then, since f is cts at a, $\lim _{x \rightarrow a} f(x)=f(a)$ Last time, we
showed that this implies $\exists \delta>0$ s.t. $x \in X$ and $0<|x-a|<\delta$ ensures $|f(x)-f(a)|<\varepsilon$.

This shows $\forall x \in X$ $|x-a|<\delta$ ensures $|f(x)-f(a)|<\varepsilon$. Coxttime: other implication.

34 The Heine-Borel Theorem
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

