Lecture 16
Office Hours:
Tues 2:30-3:30pm, Thurs 1-2pm
Final Exam: Thurs, June 13, 12-2pm
Recall:
Def: Given $x \leq \mathbb{R}, a \in \mathbb{R}$ is a Sbiatteftcc point of x leet regal pointals x if $\forall g>0, \exists x \in \chi$ st.

$$
\left\{\begin{array}{l}
0<a-x<\delta^{2} \\
0<x-a<\delta_{\text {lest }}
\end{array}\right.
$$

Lemma: a is a ebtitht (resp. left) right acc point of $x \subseteq \mathbb{R}$
$\exists x_{n}: \mid N \xrightarrow{\mathbb{}} \chi \backslash\{a\}$ sit. $x_{n} ग a$ $x_{n} \searrow a$
Def: Given $x \subseteq \mathbb{R}, f: x \rightarrow \overline{\mathbb{R}}$,

the limit of $f(x)$ as x approaches
a $\{$ from the left is L if from the right
$\forall x_{n}: \mathbb{N} \rightarrow x \backslash\{a\}$ sit. $\left\{x_{n}\right\rangle Q, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

We denote this as

$$
\begin{aligned}
& \lim _{x \rightarrow a^{-}} f(x)=L \\
& \lim _{x \rightarrow a^{+}} f(x)=L
\end{aligned}
$$

$$
\begin{aligned}
& \text { Def: Given } x_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}_{N}: \mathbb{N} \rightarrow \mathbb{R} \\
& \limsup _{n \rightarrow \infty} x_{n}:=\lim _{N \rightarrow \infty} \sup \left\{x_{n}: n>N\right\} \\
& \liminf _{n \rightarrow \infty} x_{n}:=\lim _{N \rightarrow \infty} \frac{i^{n}\left\{\left\{x_{n}: n>N\right\}_{1}\right.}{b_{N}: \mathbb{N} \rightarrow \overline{\mathbb{R}}}
\end{aligned}
$$

Lemma: For any $x_{n}: \| N \rightarrow \mathbb{R}$, a_{N} is decreasing and b_{N} is increasing. Hence $\lim _{N \rightarrow \infty} a_{N}$ and $\lim _{N \rightarrow \infty} b_{N}$ exist.

Thm: Given $x_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$,

$$
\lim _{n \rightarrow \infty} x_{n} \text { exists } \Leftrightarrow \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} s x_{n}
$$

Furthermore, if either of these equivalent conditions Roles,

$$
\lim _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \operatorname{sop}_{n} .
$$

The $(H W 7):$ Consider $x_{n}: \mathbb{N} \rightarrow \mathbb{R}$.
(i) Fix $x \in \mathbb{R}$.
x is a subseguential limit
in

$$
\forall \varepsilon>0,\left|\left\{n:\left|x_{n}-x\right|<\varepsilon\right\}\right|=+\infty
$$

(ii) $+\infty$ is a subseguential limit
§ $\left\{x _n\right.$: $\left.n>N\right\}$ is unbid above for all N
(iii) $-\infty$ is a subsegrential limit I $\left\{x _n\right.$: $\left.n>N\right\}$ is unbid below for all N

The: Given $x_{n}: \mathbb{N} \rightarrow \mathbb{R}$, let $S=\{s \in \bar{R}: s$ is a limit of a subsequence of $\left.x_{n}\right\}$.
$x_{n}=\max (s)$
Then $\operatorname{limssp}_{n \rightarrow \infty} x_{n}=\max (s)$

$$
\operatorname{limin}_{n \rightarrow \infty} f x_{n}=\min (s)
$$

OP:
Step 1: We will show $\lim _{n \rightarrow \infty} x_{n} \in S$.
Case 1): $\lim _{n \rightarrow \infty} \rightarrow x_{n}=-\infty$
Then limsup $x_{n} \geq$ liming $x_{n} \Rightarrow$ liming $x_{n}=-\infty$.
Thus, by prev the, $\lim _{n \rightarrow \infty} x_{n}=-\infty$, so $S=\{-\infty\}$. Thus $\lim _{n \rightarrow 2 \infty} x_{n} \in S$.

Case 2: $\operatorname{limsu}_{n \rightarrow D_{0}} x_{n}=+\infty$
That is, $\lim _{N \rightarrow \infty} a_{N}=+\infty$. Fix arbitrary $m \in \mathbb{R}$. Then $\exists N_{0}$ st. $N \geq \mathbb{N}_{0}$ ensures $a_{N}>m$

Since $a_{N}=\sup \left\{x_{n}: n>N\right\}, m$ is not an upper bound for $\left\{x_{n}: n>N\right\}$, so $\exists n_{0}>N$ sit. $x_{n_{0}}>m$. Thus x_{n} $\limsup x_{n}=+\infty \in S$.

Case 3): $\limsup _{n \rightarrow \infty} x_{n}=t \in \mathbb{R} \ldots$
that is $\lim _{N} \rightarrow \infty a_{N}=t$. Fix $\varepsilon>0$. By defy of convergence, \exists No sit. N E N_{0} ensures

$$
\left|a_{N}-t\right|<\varepsilon \Rightarrow
$$

$\sup \left\{x_{n}: n \geqslant\right\}=a_{N}<t+\varepsilon$.
Thus, $n>N_{0}$ ensures $x_{n}<t+\varepsilon$.
Suppose, for the sake of
contradiction, that contracliction, that $\left|\left\{n: t-\varepsilon<x_{n}<t+\varepsilon\right\}\right|<+\infty$.
Thus, \exists N $>$ No sit. $x_{n} \leq t-\varepsilon$ for all $n>N_{1}$.

Thus, for all $N \geq N_{1}$, $a_{N} \leq a_{N_{1}}^{=} \sup \left\{x_{n}: n>N_{1}\right\} \leq t-\varepsilon$.
This contradicts that $\lim _{N \rightarrow \infty} a_{N}=t$.
Thus, $\left|\left\{n: t-\varepsilon<x_{n}<t+\varepsilon\right\}\right|=+\infty$, So \quad mas $x_{n}=t \in S$.

Step 2:
Note that $\liminf _{n \rightarrow \infty} x_{n}=-\lim _{n \rightarrow \infty} \leq x_{n}$ Note that if S is the set of subsegrential limits of x_{n}, then - S is the seta of subseguential limits of $-x_{n}$.
Thus, since Step 1 show led $\lim _{n \rightarrow 5} \rightarrow-x_{n} \in-S$, we have $\lim _{n \rightarrow \infty} x_{n}=-\lim _{n \rightarrow \infty} x^{-} x_{n} \in S$.

Step 3:
We will now show limsup x_{n} and liming x_{n} are the largest and smallest subseguential limits.
Fix $t \in S$. There exists $x_{n_{k}} \rightarrow t$.

Since $n_{k} \geq k$, for all $N \in \mathbb{N}$

$$
\left\{x_{n_{k}}: k>N\right\} \subseteq\left\{x_{n}: n>N\right\} .
$$

Thus

$$
\begin{aligned}
& b_{N}=\inf \left\{x_{n}: n>N\right\} \leq \operatorname{ing}\left\{x_{n_{k}}: k>N\right\} \\
& \sup \left\{x_{n_{k}}: k>N\right\} \leq \sup \left\{x_{n}: n>N\right\}=a_{N}
\end{aligned}
$$

Sending $N \rightarrow \infty$,

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} x_{n}=\lim _{N \rightarrow \infty} b_{N} \leq \liminf _{k \rightarrow \infty} x_{n_{k}}=t \\
& \ldots=\operatorname{limsus}_{k \rightarrow \infty} x_{n_{k}} \leq \lim _{N \rightarrow \infty} a_{N}=\lim _{n \rightarrow \infty} x_{n} .
\end{aligned}
$$

Application of liminf and limsup seguential characterigation of usc/isc.
Thm: Given $x \leq \mathbb{R}, f: x \rightarrow \mathbb{R}$ is supper semicts at $x_{0} \in X$
lower semicts

Pf: First assume f is upper semicts at x_{0}, that is, $\forall \varepsilon>0$, $\exists \delta>0$ s.t. $x \in x$ and $\left|x-x_{0}\right|<\delta$, $f(x)<f\left(x_{0}\right)+\varepsilon$.

Fix $x_{n}: \mathbb{N} \rightarrow x$ s.t. $x_{n} \rightarrow x_{0}$ Let $a_{N}=\sup \left\{f\left(x_{n}\right): n>N\right\}$. We seek to show $\lim _{N \rightarrow \infty} a_{N} \leq f\left(x_{0}\right)$.

Fix $\varepsilon>0$ arbitrary. It suffices to show that $\exists\left(N_{0}\right.$ sit. $N \geq N_{0}$ ensures $a_{N} \leq f\left(x_{0}\right)+\varepsilon$. Then we will have $\lim _{N \rightarrow \infty} a_{N} \leq f\left(x_{0}\right)+\varepsilon$. Since $\varepsilon>0$ was arbitrating, this
shows $\lim _{N \rightarrow \infty} a_{N} \leqslant f\left(x_{0}\right)$.

Choose $\delta>0$ as in the definition of upper semicontinuiors. Since $x_{n} \rightarrow X_{0}, \exists N_{0}$ st. $n \otimes N_{0}$ ensures $\left|x_{n}-x_{0}\right|<\delta$; hence $f\left(x_{n}\right)<f\left(x_{0}\right)+\varepsilon$. This shows

$$
a_{N_{0}} \leq f\left(x_{0}\right)+\varepsilon .
$$

Since a_{N} is decreasing, $\forall N \geq N_{0}$,
$a_{N} \leq a_{N_{0}} \leq f\left(x_{0}\right)+\varepsilon$.

$$
a_{N} \leqslant a_{N_{0}} \leqslant f\left(x_{0}\right)+\varepsilon \text {. }
$$

Thus (e) holds.
Assume (+8) holds. We seek to show f is upper semicts. Fix $\varepsilon>0$ arb. Assume, for the sake of contradiction that, $\forall \delta>0, \exists x \in \mathcal{X}$ with $\left|x-x_{0}\right|<\delta$ but $f(x) \geq f\left(x_{0}\right)+\varepsilon$.
Thus, there exists $x_{n}: \mathbb{N} \rightarrow \chi$ s.t. $x_{n} \rightarrow x_{0}$ and $f\left(x_{n}\right) \geq f\left(x_{0}\right)+\varepsilon$, $\forall n \in \mathbb{N}$. Hence $\left.\sup _{\{1} f\left(x_{n}\right): n>N\right\}$ $\geq f\left(x_{0}\right)+\varepsilon$. Thus $\limsup _{n \rightarrow \infty} f\left(x_{n}\right) \geq f\left(x_{0}\right)+\varepsilon$ $>f\left(x_{0}\right)$.

This is acontradicllon. Thus f is upper semicondinuous.
Finally the corresponding characterization of Iss follows from the fact that f is Is $\Leftrightarrow-f$ is use.

One last important property of continuow functions: 8
Ohm: (Intermediate ValueThm) Gwen interval $I \subseteq \mathbb{R}, f: I \rightarrow \mathbb{R}$ s.t. f is cts at x for all $x \in I$, then, for any $a, b \in I_{1}$,
if $\frac{y \text { is between } f(a) \text { and } f(b) \text {, }}{f(a) \leq y \leq f(b) \text { or } f(b) \leq y \leqslant f(a)}$ then $\exists \frac{x \text { between } a \text { and } b}{a \leq x \leqslant b \text { or } b \leq x \leqslant a}$

$$
\text { s.t. } f(x)=y .
$$

