Lecture 6

Office Hours:

Tues 2:30-3:30pm, Thurs 1-2pm Final Exam: Thurs, June 13, 12-2pm

Lemma a is a Fight (resp. left) acc point of X=R right Zn:IN->X\sas s.t. Xn/a XnJa)el: Given XER, f:X=R, e al right elter pt of X, LER, test acc pt the limit of f(x) as x approaches a from the left is L if (from the right $\forall x_n : |N - 7X \setminus \{a\} s:t \cdot \{x_n \land a, \lim_{n \to \infty} f(x_n) = L.$

f(x)We denote this as $\lim_{x \to \infty} f(x) = L$ $m_{+}f(x)$ ペラの $\lim_{x \to \infty} f(x) = L$ $\chi \rightarrow Q^{\dagger}$

Siven Xn: IN-> RN-> R $\lim_{N \to \infty} x_n := \lim_{N \to \infty} \sup_{X_n} x_n : n N$ $\lim_{N \to \infty} \lim_{N \to \infty} \inf_{n \to \infty} \frac{1}{N} \sum_{n \to \infty$ 2N: N->R

Lemma: For any Xn: IN-TR, an is decreasing and by is increasing. Hence lim and lim by exist. N-700 N-700

Thm: Given Xn: NJR, lim Xn exists <=> liming Xn = limsup Xn n= as Furthermore, if either of these equivalent conditions holds, $\lim_{n \to \infty} \chi_n = \lim_{n \to \infty} \chi_n = \lim_{n \to \infty} \chi_n.$ Fact: $\liminf_{n \to \infty} - \chi_n = -\lim_{n \to \infty} \chi_n$ $\liminf_{n \to \infty} \chi_n \leq \limsup_{n \to \infty} \chi_n$

Thm (HW7): (consider 2n: N)R. (i) Fix XER x is a subsequential limit $\forall \epsilon > 0, [in: |x_n - \chi| < \epsilon^2] = +\infty$ (ii) + a is a subsequential limit {x_n: n>N} is unbdd above for all N xn 15 unbounded above $\frac{(i_{ij}) - \infty i_{s} a subsequential limit}{\sqrt{x_n: n>N}} is unbdd below for all N$ Xnis unbounded below

Thm: Given $\chi_n: |N- \mathcal{P}| \overline{R}$, let $S = \xi s \in \overline{R}: s$ is a limit of a Subsequence of $\chi_n \overline{f}$. Then limsup $\chi_n = max(s)$

 $\lim_{n\to\infty} \chi_n = \min(S).$

CHY: O Step 1: We will show insur Xn ES. $\frac{\left[Case 1 \right] \cdot \lim_{n \to \infty} x_n = -\infty}{\text{Then } \lim_{n \to \infty} x_n \ge \lim_{n \to \infty} x_n = -\infty}$ Thus, by prev thm, $\lim_{n\to\infty} x_n = -\infty$, so S = $\{-\infty\}$. Thus $\lim_{n\to\infty} x_n \in S$.

Case 2: limsup Xn = +00. That is, him an =+ a. Fix arbitrary MER. Then 3 No S.t. NZOU. ensures an > m.

Since an = super nonly M is not an apper bound for Exn:n7NJ, so J n.>N S.t. Xn > M. Thus Xn is unbounded about, hence limsup $\chi_n = +\infty \in S$.

12n: 2-8< xn < 2+83 <+ a). Thus, J N,>No s.t. $\chi_n \leq t - \varepsilon$ for all $n^2 N_1$.

This contradicts that $\lim_{N \to \infty} a_N = t$. Thus, $|\{n: t - \varepsilon < \chi_n < t + \varepsilon \}| = +\infty$, So $\lim_{N \to \infty} \chi_n = t \in S$.

Step 2: Note that liminf $\chi_n = - \limsup_{n \to \infty} \chi_n$ Note that if Sis the set of subsequential limits of Xn,U then 0-5 is the set of subsequential limits of - Xn. Thus, "since Step 1 showed $\lim_{n \to \infty} \int x_n E - S_i he have$ $\lim_{n \to \infty} \int x_n = -\lim_{n \to \infty} \int x_n E S_i$

Step S: Steps: We will now show linsup an and liming an are the largest and smallest subsequential limits. Fix tes. There exists $x_{n_K} \rightarrow t$.

Since $n_{k} \ge k$, for all $N \in N$ $\xi_{2n_{k}} : k > N \xi \le \xi_{2n} : n > N \xi$.

Thus

 $b_N = inf(x_n; n^2N) \leq inf(x_n; k^2N)$ $sup {x_{nk}}: k > N {f} \leq sup {x_{n}}: n > N {f} = a_{N}$

Sending N=200, $\liminf_{k \to \infty} \chi_n = \lim_{k \to \infty} b_k \leq \liminf_{k \to \infty} \chi_{nk} = t$

 $= \limsup_{K \to \infty} \chi_{MK} \leq \lim_{N \to \infty} \chi_{N} = \limsup_{N \to \infty} \chi_{N}.$

Application of liminf and limsup Sequential characterization of usc/lsc. <u>Ihm</u>: Given X=R, f:X-> R is Supper semicts at 76 EX Jower semicts $\forall \chi_n: N \rightarrow \chi_{S,t}, \chi_n \rightarrow \chi_o, [limsupf(x_n) \leq f(x_o)$ (liming-f(xn)=-f(xo) Of: First assume f is upper semicts at xo, that is, YEZO, 3 570 s.t. xe X and 1x-xol< 8, $f(x) < f(x) + \varepsilon$ A.t.A χ_{D}

Fix E>O arbitrary. It suffices to show that I (No s.t. NZNo ensure $a_N \leq f(x_0) + \varepsilon$. Then we will have $\lim_{N \to \infty} a_N \leq f(x_0) + \varepsilon$. Since E>O was arbitrary this shows when an = f(xo).

Choose S>O as in the definition of upper semicontinuity. Since xn-7xo, 3 Nos.t. noNo ensures 1xn-xol<S; hence f(xo)+E. This shows

 $a_{No} \leq f(x_0) + \varepsilon$. Since as is decreable, $\forall NZNO$, $a_N \leq a_{NO} \leq f(x_0) + \varepsilon$.

Assume (*) holds. We seek to show f is upper servicts. Fix E>O arb. Assume, for the sake of contradiction that, YSYO, JXEX with $|x-x_0| < \delta$ but $f(x) \ge f(x_0) + \epsilon$. Thus, there exists $\chi_n: N \to \chi$ s.t. xn > xo and f(xn)=f(xo)tE VneIN. Hence supéf(xn):n>Ns $\geq f(x_0) + \varepsilon$. Thus limisup $f(x_0) \geq f(x_0) + \varepsilon$ >f(x0).

One last important property of continuous functions: Thm: (Intermediate Value Thm) Given interval $I \subseteq IR$, $f: I \rightarrow IR$ s.t. f is cts at χ for all $\chi \in I$, then, for any $a, b \in I$,

