Lecture 17
Midterm 2 solutions posted
Office Hours:Thurs 1-2pm
Final Exam: Thurs, June 13, 12-2pm
Recall:
The: Given $x_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$, let $\overline{S=\{s \in \bar{R}: s \text { is a limit of a }}$ subsequence af $\left.x_{n}\right\}$. 18 . $x_{n}=\max (s)$
Then $\limsup _{n \rightarrow \infty} x_{n}=\operatorname{nax}(s)$

$$
\liminf _{n \rightarrow \infty} x_{n}=\min (S)
$$

The: Given $\chi \leqq \mathbb{R}, f: \chi \rightarrow \mathbb{R}$ is Supper semicts at $x_{0} \in X$
lower semicts

One last important property of continuow functions:
Ohm: (Intermediate Value Chm) Given interval $I \subseteq \mathbb{R}, f: I \rightarrow \mathbb{R}$ s.t. f is cts at x for all $x \in I$, then, for any $a, b \in I_{\text {, }}$
if y is between $f(a)$ and $f(b)$,
$f(a) \leq y \leq f(b)$ or $f(b) \leq y \leq f(a)$ then $\exists \frac{x \text { between } a \text { and } b}{a \leqslant x \leqslant b \text { or } b \leqslant x \leqslant a}$ s.t. $f(x)=u$.

Pf: Fix $a, b \in I$. FROG $a \leqslant b$. Suppose y is between $f(a)$ and $f(b)$.

Case 1: $f(a) \leq y \leq f(b)$
We must find $x \in[a, b]$ sit. $f(x)=y$
$f(x)$

Let $S=\{x \in[a, b]: f(x) \leq y\}$.
Since $a \in S, S \neq \varnothing$. Since S is bod above, its supremum exists. Let $x_{0}=\sup (S)$.

First, we will show $f\left(x_{0}\right) \leq y$. For any $n \in \mathbb{N}, x_{0}-\frac{1}{n}$ is not an upper bound of S so $\exists x_{n} \in S$ $x_{0} \geq x_{n}>x_{0}-\frac{1}{2}$. Thus $x_{n} \rightarrow x_{0}$.
Furthermore, $x_{n} \in S$ ensures $f\left(x_{n}\right) \leq y$
$\forall n \in \mid N$. Since fiscts at x_{0}, $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

$$
y \geq \lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) .
$$

It remains to show $f\left(x_{0}\right) \geq y$ If $x_{0}=b, f\left(x_{0}\right)=f(b) \geq y$. Now, suppose $x_{0}<b$. Define

$$
t_{n}=\min \left\{b_{1}, x_{0}+\frac{1}{n}\right\}
$$

By definition,
definition,

Thus $t_{n} \rightarrow x_{0}$.

Since $t_{n}>x_{0}, t_{n} \notin S$, but since $t_{n} \in[a, b]$, we must have $f\left(t_{n}\right)>y$.

$$
y \leq \lim _{n \rightarrow \infty} f(t n)=\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

This shows $f\left(x_{0}\right)=y$.
Case 2: $f(b) \leq y \leq f(a)$
Since - f is continuous on
I_{1}, by case $1, \exists x_{0} \in[a, b]$ st. $-f\left(x_{0}\right)=-y$. This
gives $f\left(x_{0}\right)=y$
Moral cts fins always attain
"intermediate values. "intermediate values."

Interestingly, the intermediate value property deer not characterize continuo
functions.

$$
\varepsilon x: f(x)=\left\{\begin{array}{lr}
\sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\
0 & x=0
\end{array}\right.
$$

Claim: f is discontinuous at 0 , that is we do not have $\lim _{x \rightarrow 0} f(x)=0$.
Let $x_{n}=\left(\frac{n \pi}{2}\right)^{-1}$. Then $x_{n} \rightarrow 0$.

However,
$f\left(x_{n}\right)=\sin \left(\frac{n \pi}{2}\right)->0$.
Thus is discontmuss at 0 .
Claim: is continuous at all $x \in \mathbb{R} \backslash\{0\}$.

Claim: f satisfies the intermediate value property, that is, for all $a \leq b$ Sand y between flail and $f(b)$] there exists $x \in[a, b]$ s.t. $f(x)=y$.
In fact, the only problem with this example is that there
is no open interval around zero on which f is either increasing or decreasing.
Cor: Given an interval $I \subseteq \mathbb{R}$, $\overline{f: I} \rightarrow \mathbb{R}$ Cts at all $x \in I$, $f(I)$ is an interval.

Pl: If $\inf (f(I))=\sup (f(I))$, hen $f(I)$ is a single point,
Suppose $\operatorname{ing}(f(I))<\sup (f(I))$ and fix sit. inf $f(I))<y<$ sup $f(f(1)$. Then there exist yo, y, Ef(I) $x_{0}, x_{1} \in I$

$$
f\left(x_{0}\right)=y_{0}<y<y_{1}=f\left(x_{1}\right) .
$$

By IVT, there exists $x=I$ s.t. $f(x)=y$.
Thus, $f(I)$ is an interval.
Ohm: Given an interval $I \leqslant \mathbb{R}$, suppose $f: I \rightarrow \mathbb{R}$ is strictly increasing and $f(I)$ is an interval. Then f is continuous at all $x \in I$

$$
\exists_{x<y \Rightarrow f(x)<f(y)}
$$

Pf: Fix $x_{0} \in I$.
case 1: $\operatorname{ing}(I)<x_{0}<\sup (T)$.
Then, since f is strictly increasing,

$$
\begin{aligned}
& \quad \inf (f(I))<f\left(x_{0}\right)<\sup (f(I)) . \\
& \text { Fix } \varepsilon>0 \text {. Let } \\
& \varepsilon_{0}=\min \left\{\varepsilon,\left|f\left(x_{0}\right)-\operatorname{ing}(f(I))\right|\left(f\left(x_{0}\right) \sup (I(I)\}\right.\right. \\
& \text { Note } \varepsilon_{0}>0 .
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { Then } \\
\begin{aligned}
\operatorname{ing}(f(I)) & <f\left(x_{0}\right)-\frac{\varepsilon_{0}}{2} \\
& <f\left(x_{0}\right) \\
& <f\left(x_{0}\right)+\frac{\varepsilon_{0}}{2} \\
& <\sup (f(I))
\end{aligned}
\end{aligned}
$$

Thus $f\left(x_{0}\right)-\frac{\varepsilon_{0}}{2} \in f(I)$ and

$$
\exists x_{1} \in I \text {, s.t. } f\left(x_{1}\right)=f\left(x_{0}\right)-\frac{\varepsilon_{0}}{2} \text {. }
$$

Similarly, $\exists x_{2} \in I$ st.

$$
f\left(x_{2}\right)=f\left(x_{0}\right)+\frac{\varepsilon_{0}}{2} .
$$

Since f is strictly increasing,

$$
x_{1}<x_{0}<x_{2}
$$

Let $\delta=\min \left\{\left|x_{0}-x_{1}\right|| | x_{0}-x_{2} \mid\right\}$.
Then if $\left|x-x_{0}\right|<8$, we have

$$
\begin{aligned}
& x_{1}<x<x_{2} \text {, so } \\
& f\left(x_{0}\right)-\frac{\varepsilon_{0}}{2}=f\left(x_{1}\right)<f(x)<f\left(x_{2}\right)=f\left(x_{0}\right)+\frac{\varepsilon_{0}}{2}
\end{aligned}
$$

Thus, $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon_{0}}{2}<\varepsilon$.
Case 2: exerise

